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Thymosin b4 (Tb4) is a multifunctional and widely distributed peptide that plays a pivotal
role in several physiological and pathological processes in the body, namely, increasing
angiogenesis and proliferation and inhibiting apoptosis and inflammation. Moreover, Tb4
is effectively utilized for several indications in animal experiments or clinical trials, such as
myocardial infarction and myocardial ischemia-reperfusion injury, xerophthalmia, liver and
renal fibrosis, ulcerative colitis and colon cancer, and skin trauma. Recent studies have
reported the potential application of Tb4 and its underlying mechanisms. The present
study reveals the progress regarding functions and applications of Tb4.
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INTRODUCTION

Thymosin is a lymphocyte growth factor that was initially extracted from the calf thymus by
Goldstein and White (1). The thymosin family can be divided into three groups: a, b, and g
thymosin, based on the differences in their isoelectric point. The isoelectric point of thymosin b (Tb)
is 5.0–7.0 (2). At present, 15 types of b-thymosin have been identified; of these, three main forms are
found in the human body (Tb4, Tb10, and Tb15), Tb4 being the most abundant, accounting for
70%–80% of b-thymosin (3–5). Tb4 is found in various tissues, particularly in the thymus, spleen,
and peritoneal macrophages (6)and is highly expressed in the brain, liver, kidney, testis,
myocardium, platelets, and leukocytes (7).
BIOLOGICAL FUNCTION OF Tb4

Tb4 comprises 43 amino acids and its biological activity is determined by encoded gene fragments.
The first four amino acids of Tb4 regulate the anti-inflammatory and antifibrotic effects (8, 9),
whereas amino acids 1–15 inhibit apoptosis and reduce the toxicity induced damage caused to cells
(10). The active fragment encoded by amino acids 17–23 triggers angiogenesis and growth of hair
follicles (11, 12).

Tb4 Promotes Angiogenesis
Tb4 promotes angiogenesis, enhances endothelial progenitor cell (EPC) viability, and triggers the
proliferation and migration of cells as well as formation of capillary-like structures in cells (13).
Vascular endothelial growth factor (VEGF) is an important paracrine factor secreted by the
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progenitor cells to promote angiogenesis, which can further
induce proliferation, differentiation, and migration of
endothelial cells and increase vascular permeability. Tb4
upregulates VEGF expression, i.e., when Tb4-pretreated EPCs
were transplanted into the infarcted rat heart, the expression of
VEGF in the border region was markedly increased than that
after EPC transplantation alone (14). The combination of Tb4
and human adipose-derived stem cells was used to treat
hindlimb ischemia in mice. Moreover, Tb4 enhances the
endothelial differentiation of these stem cells by upregulating
various angiogenic factors, such as angiopoietin-1 and von
Willebrand factor; furthermore, it triggers blood perfusion and
collateral formation in the hindlimb by increasing the capillary
density (15).

Effects of Tb4 on Cell Proliferation and the
Cell Cycle
Tb4 affects the cell cycle and promotes cell proliferation. After
knocking-out Tb4 in intestinal epithelial cells, cells slowly
proliferated, cell cycle was affected indicating a marked
decrease in the G0/G1 population and a remarkable increase in
polyploid populations among these cells, and DNA replication
was affected by DNA damage (16). Moreover, intrahippocampal
infusion of N-acetyl-erythritosyl-lysyl proline (a Tb4 peptide)
facilitates the generation of new neurons in the hippocampus
(17). Tb4 treatment enhances the proliferation of mesenchymal
stem cells (MSCs), particularly those derived from adjacent
adipose tissue, and interleukin (IL-8) crucially mediates Tb4-
enhanced proliferation (18). Furthermore, Tb4 enhances the
proliferation of oligodendrocyte progenitor cells (OPCs) and
their maturation into myelinating oligodendrocytes (19).
Furthermore, it stimulates the proliferation of adult rat cardiac
progenitor cells and promotes their differentiation into vascular
endothelial cells, coronary smooth muscle cells, and
cardiomyocytes (20). Additionally, Tb4 accelerates vascular
endothelial cell proliferation, thereby protecting post-ischemic
cardiac function (21).

Tb4 Inhibits Apoptosis
Tb4 treatment alleviated tubular epithelial cell apoptosis by
inhibiting the transforming growth factor (TGF)-b pathway in
Sprague-Dawley (SD) rats with chronic renal tubular interstitial
fibrosis (22). Moreover, it prevents nucleus pulposus cell
apoptosis, reduces cellular aging, and promotes cell
proliferation (23). Tb4 further decreased the apoptosis rate of
EPCs induced by serum depletion and markedly downregulated
the expression of the apoptosis-related proteins caspase-3 and
caspase-9 in EPCs (24). Furthermore, Tb4 prevented
mitochondrial disruption and inhibited caspase-mediated
apoptosis of human corneal epithelial cells exposed to ethanol
in vitro, indicating that it may function as an antiapoptotic agent
(25). In addition, Tb4 may inhibit neuronal apoptosis by
upregulating glucose-regulated protein 78 and downregulating
C/EBP homologous protein and caspase−12, thereby reducing
cerebral ischemia/reperfusion injury (26). In oxygen-glucose
deprived and reoxygenated (OGD/R) cells, the rate of
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apoptosis was increased and GRP78, CHOP, and Bax were
upregulated; however, Bcl-2 was downregulated, which was
reversed by Tb4 overexpression. Moreover, Tb4 prevented
OGD/R-induced endoplasmic reticulum stress-dependent
apoptosis in cortical neurons (27). As Tb4 could attenuate the
OGD/R-associated downregulation of P62 and Bcl-2 as well as
the upregulation of autophagy mediators, such as autophagy-
related protein-5 and the ratio of microtubule-associated protein
1 light chain 3, it effectively inhibited PC12 cell apoptosis and
autophagy induced by OGD/R (28). Moreover, Tb4 treatment
upregulated the expression of miR-200a; however, the increase in
miR-200a downregulated the expression of p53 and reduced
apoptosis of progenitor cells subjected to oxygen glucose
deprivation (OGD) (29).

Tb4 Ameliorates Inflammation
Tb4 ameliorates inflammatory reactions. In a mouse model of
autoimmune encephalomyelitis, hematoxylin-eosin staining
showed markedly decreased the number of inflammatory cells
in the brains of Tb4-treated mice (30). In models of liver injury
mediated by ethanol and lipopolysaccharide, Tb4 prevented the
activation of nuclear factor kappa B (NF-kB) by blocking the
phosphorylation of the inhibitory protein IkB, thereby
preventing the production of proinflammatory cytokines such
as tumor necrosis factor-a (TNF-a), IL-1b, and IL-6 (31). A
neonatal mouse fetal alcohol spectrum disorder model revealed
that Tb4 treatment effectively blocked the increase in ethanol-
induced inflammatory factors and decreased the expression of
TNF-a and IL-1b (32).
Tb4 AND SIGNALING PATHWAYS

Tb4 affects the secretion of multiple cytokines and regulates
various signaling pathways. It alleviates inflammatory damage by
regulating the NF-kB and Toll-like receptor pathways and
reducing the release of cytokines such as TNF-a and IL-1
receptor-associated kinases. During tissue repair, Tb4 regulates
PI3K/Akt/eNOS, Notch, angiopoietin-1/Tie2, and other
pathways. In addition, it also regulates various signaling
pathways, such as the TGF-b pathway to attenuate fibrosis and
the Wnt pathway to promote hair follicle generation (Figure 1).

PI3K/Akt/eNOS Pathway
PI3K/Akt is an important pathway associated with
microangiogenesis, and plays a pivotal role in cell migration,
cell survival, and angiogenesis (33, 34). PI3K/Akt is the upstream
pathway of eNOS and affects its transcription and translation.
eNOS increases the local mobilization of EPCs and participates
in angiogenesis (35). Moreover, exogenous Tb4 stimulates EPC
proliferation, migration, and adhesion via the PI3K/Akt/eNOS
signal transduction pathway (36). After intraperitoneal injection
of Tb4 in rats with cerebral ischemia and reperfusion, the level of
Akt phosphorylation and the expression of eNOS in the cerebral
cortex increased, regeneration of blood vessels around the
infarction occurred, and the neurological function of the rats
December 2021 | Volume 12 | Article 767785
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was recovered (37). Furthermore, Tb4 induces angiogenesis via
PI3K/AKT signaling pathway in ischemic limb diseases (38).
Systemic injection of a Tb4-specific C-terminal tetrapeptide
enhanced the early myocyte survival by activating Akt-
mediated signaling, increased coronary vessel growth, and
inhibited inflammation in mice and pigs (39).

Notch Pathway
The Notch signaling pathway comprises four Notch receptors
(Notch-1, 2, 3, 4, and 5) and five ligands (40). This pathway is
crucial in neuronal function, tumor cell proliferation, apoptosis,
angiogenesis, arterial endothelial cell stability, and expansion of
bone marrow hematopoietic stem cells (41). Tb4 induces
angiogenesis in human umbilical vein endothelial cells
(HUVECs) via Notch signaling pathway. In the presence of
Tb4, the expression of Notch1 and Notch4 increased in a dose-
and time-dependent manner and the speed of lumen formation
was accelerated. When the Notch pathway is inhibited, the
efficacy of Tb4 decreases (42). Moreover, Tb4 inhibited the
proliferation and activation of hepatic stellate cells (HSCs),
attenuated liver fibrosis by inhibiting Notch signaling, and
markedly reduced expression levels of Notch2 and Notch3,
which were increased in the liver cells (42). Furthermore, Tb4
enhanced HUVEC viability, angiogenesis, and migration, as well
as promoted the expression of angiopoietin 2, VEGF A, Notch3,
and other cytokines in HUVECs in a mouse model of critical
limb ischemia (43). In addition, Takeshitak et al. (44) reported
that endothelial-specific Notch1 knockdown mice had impaired
neovascularization after hindlimb ischemia, and Notch1 induced
angiogenesis without VEGF involvement (45). Recent studies
reported that Notch signaling could also work in conjunction
with VEGF and regulate VEGF expression (46–48). Shu Min
et al. reported that Notch1 and Notch4 were required for Tb4-
Frontiers in Endocrinology | www.frontiersin.org 3
induced VEGF expression and angiogenesis. The downregulation
of Notch1 or Notch4 by siRNA or DAPT inhibited Tb4-induced
VEGF expression (42).

TGFb/Smad Pathway
The TGFb/Smad signaling pathway is crucially mediated by
TGFb. In a model of fibrosis, TGFb1 plays an important role in
HSC activation (49). TGFb1 initiates intracellular signal
transduction by binding to the TGFb receptor type II (TGFbR
II), and activates TGFb receptor type I (TGFbR I) kinase.
Thereafter, TGFbR I kinase activates the downstream proteins
Smad2 and Smad3 via phosphorylation. Subsequently, Smad2,
Smad3, and Smad4 form a complex and are transferred to the
nucleus, where they increase the expression of various fibrotic
genes, such as type I and type II collagen, tissue inhibitors of
metalloproteinase-1 and -2 (TIMP-1 and TIMP-2), and
plasminogen activator inhibitor (PAI)-1 (50). Chen et al.
reported that Tb4 reduced the expression of TGF- b1, TGFbR
II, Smad2, and Smad3 in the liver tissues of mice with bile duct
ligation. Moreover, they demonstrated that Tb4 reduced TGFbR
II expression level in human hepatic stellate cells LX-2 in vitro.
These results indicated that Tb4 alleviated cholestatic liver
fibrosis by inhibiting the TGFb/Smad pathway (51). Zhang
et al. reported that Tb4 treatment markedly inhibited the
TGFb1/KF-kB signaling pathway, which affects neuroprotection
and neurorestoration after traumatic brain injury (52).

Wnt Signaling Pathway
The Wnt signaling pathway is crucially associated with cell
proliferation and differentiation and is functionally important
for hair follicle morphogenesis (53). In the Wnt signaling
pathway, Wnt ligands induce the phosphorylation of
Disheveled to prevent GSK3b-dependent phosphorylation of
FIGURE 1 | Tb4 regulates various signaling pathways. Tb4 ameliorates inflammatory damage by regulating NF-kB and Toll-like receptor pathways. During tissue
repair, Tb4 regulates PI3K/Akt/eNOS and Notch pathways. In addition, Tb4 regulates TGF-b pathway to alleviate fibrosis and Wnt pathway to promote hair follicle
formation. Tb4 also regulates apoptosis pathway to inhibit apoptosis.
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b-catenin (54). b-catenin and lymphokine-1 (Lef-1) are two key
molecules in the Wnt signaling pathway (55). Gao et al. reported
that Tb4 stimulated Wnt ligands on the cytomembrane to
transmit the signal to accumulate unphosphorylated b-catenin
for phosphorylation of Disheveled into the cytoplasm, which
further leads to the accumulation of unphosphorylated b-catenin
(56). In an epidermal-specific Tb4-overexpressing mouse model
and Tb4 global knockout mice, changes in b-catenin and Lef-1
expression were similar to those of Tb4 (56). b-catenin plays a
pivotal role in hair follicle growth. After Tb4 treatment, the
number of hair follicles in the mice significantly increased.
Moreover, Tb4 can accelerate hair growth via Wnt signaling
pathway by elevating the mRNA levels of b-catenin and Lef-1
(57, 58). Additionally, Tb4 activates the Wnt/catenin signaling
pathway in limb progenitor cells and promotes limb regeneration
in a frog model (59). Furthermore, it protected Ang II-induced
cardiomyocyte growth by regulating the Wnt pathway and Ang
II stimulation, thereby leading to myocardial hypertrophy in
mice. After Tb4 treatment, the cardiomyocyte area decreased,
and the expression of hypertrophic marker genes, such as atrial
natriuretic peptide, b-myosin heavy chain, b-catenin, and Wnt-
mediated secretory protein-1, was decreased (60).

Apoptosis Pathway
The biological mechanism of apoptosis is extremely complex,
involving the interaction of numerous proteins with signal
transducers and signaling pathways. Members of the Bcl-2
protein family are responsible for regulating apoptosis (61).
Previous studies have demonstrated that Tb4 decreases
apoptosis by increasing antiapoptotic proteins and reducing
the Bax/BCL2 ratio (62). Sosne et al. demonstrated that Tb4
treatment decreased deleterious mitochondrial alterations,
s ignificant ly decreased cytochrome c re lease from
mitochondria, and increased Bcl-2 expression in ethanol-
exposed human corneal epithelial cells, wherein it inhibited the
caspase-2, -3, -8, and -9 activity, with caspase-8 exhibiting
highest inhibition (63). Furthermore, FasL-mediated activation
of caspases-8 and -3, as well as H(2)O(2)-triggered stimulation of
caspases-9 and -3 in human corneal epithelial T (HCE-T) cells
was abolished by preincubating them with Tb4 (64).
Furthermore, Iguchi et al. combined the antitumor drugs with
other drugs that interact with apoptotic processes, and found
that after apoptosis, a low molecular weight protein, identified to
be Tb4 by HPLC analysis, was commonly decreased, and the
morphology of actin filaments changed into clump formations.
These results indicate that decreased Tb4 expression induces
apoptosis by antitumor drugs (65).
APPLICATIONS OF Tb4 AND THE
UNDERLYING MECHANISMS

Due to its rich biological activity and anti-inflammatory effects,
Tb4 regulates several inflammatory cytokines and chemokines
and exerts therapeutic effects on various injuries or diseases such
as corneal injury, xerophthalmia, and ulcerative colitis. Tb4 can
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reduce tissue fibrosis and can be used to treat pulmonary
hypertension, pulmonary fibrosis, liver fibrosis, and renal
fibrosis. Moreover, it can improve liver function and reduce
glomerular injury. Tb4 can promote angiogenesis, tissue repair,
and regeneration, and reduce scar formation. Furthermore, it can
be used to promote wound healing, treat myocardial infarction
and hindlimb ischemia, and heal damaged ligaments. In
addition, Tb4 exhibits a strong antioxidant effect and can be
used to treat cerebral or myocardial ischemia-reperfusion injury.

Protective Effect of Tb4 on the Heart
Myocardial infarction (MI) leads to sudden heart attack, and
occurs during inappropriate flow of blood to a part of the heart,
thereby causing injury to the heart due to lack of oxygen supply
(66). MI has a high rate of disability and mortality, and is the
leading cause of cardiac death (67).

Tb4 reduces the infarct size and improves contractile
performance in chronic myocardial ischemic injury through
two phases: an acute phase that occurs immediately after
injury, in which Tb4 preserves the ischemic myocardium via
antiapoptotic or anti-inflammatory mechanisms, and a chronic
phase, in which Tb4 activates the growth of vascular or cardiac
progenitor cells (68). The clinical phase I trial evaluated the
safety, tolerability, and pharmacokinetics of single and multiple
intravenous injections of Tb4 in healthy volunteers. No dose-
limiting toxicities or serious adverse events were observed. The
tendency of terminal clearance in each dose group was
consistent, and there was no obvious accumulation after
continuous administration (69). These results were in
accordance to those of another phase I clinical trial conducted
by Ruff et al, wherein they evaluated the safety, incidence of
treatment-emergent adverse events, and pharmacokinetic
parameters of synthetic Tb4. Similarly, no dose-limiting
toxicities or serious adverse events were observed (70).
Subsequently, a phase II clinical trial was conducted in patients
with acute myocardial infarction, which confirmed that Tb4
could protect and repair the heart and reduce the volume of scars
after heart attack (71). In addition, Stromberg et al. conducted a
safety trial of Tb4 in children less than one year of age; thereafter,
they conducted a randomized, double-blind clinical trial of Tb4
and placebo during congenital heart surgery. They evaluated the
postoperative time to resolution of organ failure, development
of low cardiac output syndrome, and echocardiographic index of
cardiac dysfunction. These results confirm the clinical utility of
Tb4 in improving ischemia-reperfusion injury during congenital
heart surgery (72).

Additionally, Tb4 attenuates rejection of the transplanted
heart after heart transplantation. Tb4 in combination with
adenovirus-associated vector 2.9 was used to treat rejection
after heart transplantation. In this case, Tb4 reduced acute
rejection, elevated the density of cardiac capillaries, increase
survival rates of miniature pigs after heart transplantation, and
markedly enhanced the local myocardial function of the
grafts (73).

In addition, Tb4 exhibits auxiliary functions, such as
enhancing the therapeutic effect of MSCs and increasing the
time of cardiac regeneration. Under hypoxic conditions, Tb4
December 2021 | Volume 12 | Article 767785
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(1 µg/mL) reduces the injury, apoptosis, and caspase-8 activity of
MSCs; however, it increases B-cell lymphoma-XL protein
expression and MSC proliferation. In an in vivo experiment,
the injection of MSCs containing Tb4 into the rat myocardium
effectively restored the cardiac function after myocardial
infarction, increased cardiac blood flow, and significantly
improved survival rates of MSCs (74).

Tb4 prolongs the time of heart regeneration in mammals.
Hearts of 1-day-old mice regenerated after partial surgical
resection, and this effect was lost by 7 days of age; however,
Tb4 could extend the cardiac regeneration potential of neonatal
mice to the 7th postnatal day (75).

Transplantation of EPCs can repair the heart via angiogenesis
or secretion of protective paracrine factors (76); however,
transplantation of autologous EPCs has numerous limitations,
including the limited supply of expanded EPCs, impaired
function, and activity of the transplanted cells (77).
Transplantation of Tb4-pretreated EPCs to the injured heart
could treat acute ST-segment elevation in myocardial infarction.
The cardiac function of the Tb4 group was significantly
improved compared with that of the control group, and no
serious complications were observed (78).

Considering the underlying mechanisms of protective role of
Tb4 in heart injuries, previous studies reported that treatment
with Tb4 in the myocardial infarction setting improves cardiac
function by activating Akt phosphorylation, promoting the ILK-
Pinch-Parvin complex, and suppressing NF-kB. Furthermore,
Tb4 selectively upregulates catalase, Cu/Zn-SOD, and Bcl2,
thereby protecting cardiac fibroblasts from H2O2 induced
oxidative damage (79). In the myocardial infarction model,
Tb4 enhanced cardiac function by suppressing NF-kB, thereby
attenuating cardiac fibrosis (80, 81).

In summary, Tb4 exerts therapeutic effects on various heart-
related diseases such as myocardial infarction and myocardial
ischemia-reperfusion injury, indicating that it may be used as a
promising drug for the clinical treatment of heart diseases in
the future.

Therapeutic Effects of Tb4 on Corneal
Injury and Dry Eye Syndrome
Recent studies have reported that Tb4 exerts a therapeutic effect
on corneal injury and dry eye syndrome. Corneal injuries are
common in chemical burns and oxidative injuries. Some
chemicals can quickly lead to corneal stromal dissolution,
activate stromal fibroblasts, cause a large amount of
inflammatory cell infiltration, and eventually lead to corneal
ulcers and perforations, which can lead to blindness (82).

Tb4 can affect the secretion of numerous cytokines, promote
corneal re-epithelialization, dampen untoward inflammation,
and inhibit apoptosis; thus, it exerts therapeutic effect on
corneal injury (83). Moreover, it can reduce corneal
inflammation and regulate the balance of cellular matrix
metalloproteinases and tissue inhibitors of metalloproteinases,
thus promoting corneal wound repair after alkaline injury and
improving corneal transparency. In various corneal injury
models, such as chemical injury and corneal epithelial
debridement, Tb4 exhibited strong anti-inflammatory and
Frontiers in Endocrinology | www.frontiersin.org 5
wound healing effects (84). Recombinant Tb4 treatment of
corneal burns in rabbits revealed that recombinant Tb4
effectively promoted newborn tissue remodeling and corneal
burn repair, as recombinant Tb4 regulates the expression of
MMP-2 and TIMP-2 to promote tissue repair (85). In a model of
hydrogen peroxide-induced oxidative corneal injury, Tb4
promoted the growth and migration of rabbit corneal epithelial
cells, reduced apoptosis, enhanced antioxidant capacity, and
exerted a strong protective effect on damaged corneas (86).

Dry eye syndrome is a common ophthalmic disease
characterized by ocular surface inflammation (87). Tb4 can
slow eye dryness and accelerate wound healing. It markedly
alleviated xerophthalmia symptoms in a mouse model. A
randomized double-blind clinical phase II trial revealed that
the Tb4 treatment group revealed a 35.1% reduction in ocular
discomfort than that of the vehicle control group and a 59.1%
reduction in total corneal fluorescein staining than that of the
vehicle control group. Other improvements observed in Tb4–
treated patients included tear film breakup time and increased
tear volume production (88). Furthermore, glycine Tb4 eye
drops significantly increased conjunctival goblet T cells,
significantly decreased corneal cell apoptosis, and reduced
inflammatory cytokine levels and T cells in the conjunctiva
(89). A randomized double-blind clinical phase II trial
conducted by Sosne et al. revealed that eye discomfort in the
Tb4 treatment group was reduced by 35.1% than that in the
control group, and the total corneal fluorescein staining was
reduced by 59.1%. In addition, improvement in tear film breakup
time and increase in tear volume was observed in Tb4–treated
patients (88).

Tb4 Promotes Skin Wound Healing
Wound healing includes angiogenesis, cell proliferation,
differentiation, migration, epithelial reconstruction, and wound
closure, by various cytokines. Although the design of skin flaps
and surgical techniques are constantly improving, ischemic
necrosis remains a common clinical problem (90). Tb4 can
promote cell migration and angiogenesis, regulate various
cytokines, such as intercellular adhesion molecule (ICAM-1),
MMP, laminin (LN), VEGF, and basic fibroblast growth factor,
inhibit apoptosis, eliminate inflammation, and reduce oxidative
damage (91, 92). Moreover, it can increase cell migration in
various injury models, particularly the migration of
keratinocytes, which cover the wound and protect from fluid
loss and infection (81, 93–96). Male Sprague-Dawley rats were
subjected to random-pattern skin flap operations. Tb4
significantly reduced necrotic areas; rats that received 5 mg/kg
Tb4 twice per day presented the highest survival rates. VEGF
expression and superoxide dismutase activity were markedly
increased, whereas malondialdehyde levels were reduced (97).
In a full-thickness skin defect Sprague-Dawley rats rat model,
VEGF and basic fibroblast growth factor revealed sustained and
stable high expression after treatment with recombinant Tb4,
which inhibited LN-5 expression in the early stage, beneficial for
cell proliferation and differentiation; furthermore, it upregulated
LN-5 expression in the middle and late stages, which was
beneficial for improving the matrix environment and
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promoting epidermal cell migration and wound healing (98).
Additionally, Tb4 improved burn wound healing and promoted
angiogenesis and wound closure, which may be associated with
the long-term expression of heat shock protein 70, related to F-
actin regulation during the wound-healing period (99). In
addition, Tb4 associates actin polymerization with
metalloproteinase synthesis to promote cell migration. One
mechanism proposes that profilin-dependent dissociation of
the G-actin-Tb4 complex liberates actin for filament assembly
(96). Tb4 binds to integrin-linked kinase in the lamellipodia to
activate Akt2 and increase metalloproteinase production (100).
Moreover, it increases laminin-332 synthesis, which is a known
migration factor for various epithelial and endothelial cells,
including keratinocytes (101, 102). Collectively, Tb4 has the
potential to heal and regenerate dermal injuries, and been
successfully used in several clinical trials. Fine et al. organized
a randomized double-blind clinical trial to determine whether
Tb4 may be beneficial in promoting wound healing in patients
with epidermolysis bullosa (EB). A solitary noninfected
cutaneous wound of standardized size was treated on a daily
basis with either one of three doses of Tb4 or a placebo control.
Simultaneously, the occurrence of adverse effects was sought to
confirm the safety of Tb4 when applied to EB skin, both in
children and adults. Furthermore, the occurrence of adverse
reactions was studied to confirm the safety of Tb4 when
applied to EB skin. Although it has not been proven, topical
Tb4 may be an extremely important supplement in the overall
management of patients with this potentially devastating disease
(103). Phase II clinical trials for the use of Tb4 in epidermolysis
bullosa, pressure sores, and venous stasis ulcers have been
completed. Treadwel et al. organized 143 patients with chronic
cutaneous (stage III/IV) pressure ulcers (full thickness) and
venous stasis ulcers; results revealed that Tb4 accelerated
healing by almost a month in patients who healed (104).
Another double-blind, placebo-controlled, dose-escalation
study was conducted at eight locations in Europe. This study
recruited 73 randomly assigned patients. The study reported that
Tb4 had the potential to accelerate wound healing, and
approximately 25% of patients could heal completely within 3
months, particularly those with small to moderate wounds (105).

Protective Effect of Tb4 on the Liver
Tb4 does not bind to heparin; therefore, it can spread freely into
the tissue. It ameliorated carbon tetrachloride (CCl4)-inducedacute
liver injury in mice in a dose- and time-dependent manner by
suppressing oxidative stress, inhibiting the inflammatory response,
and reducing hepatocellular apoptosis (106). Moreover, Tb4
prevented ethanol- and lipopolysaccharide-mediated oxidative
stress by decreasing reactive oxygen species and lipid
peroxidation, increasing antioxidant levels, and reducing
glutathione and manganese-dependent superoxide dismutase.

Liver fibrosis typically occurs in response to hepatic injury. It is
characterized by collagen and extracellularmatrix protein deposition
in the liver tissues (107). Activated HSCs are responsible for collagen
deposition and play a pivotal role in hepatic fibrogenesis (108).
Several studies have reported that Tb4 treatment has an antifibrotic
effect on the liver (51, 109–111). Li et al. found that Tb4 could
Frontiers in Endocrinology | www.frontiersin.org 6
markedly reduce hydroxyproline content and collagen deposition in
the livers of CCl4-induced mice and rats, and relieve liver and
pseudo-lobule necrosis, whereas the inhibition of NF-kB p65 might
be an underlying mechanism (112). Chen et al. reported that in bile
duct ligation mice, exogenous Tb4 treatment reduced collagen
deposition and suppressed a-SMA expression, a marker of
HSC activation, indicating that exogenous Tb4 treatment
hindered HSC activation to inhibit cholestatic liver fibrosis (51).
Barnaeva et al. (109) demonstrated that Tb4-treated HSCs
upregulated HGF and downregulated PDGF-b receptor at the
RNA level. Reyes-Gordillo et al. reported that Tb4 treatment
prevented PDGF-bb-dependent proliferation and migration of
cultured human HSCs by inhibiting PDGF-bb-dependent
phosphorylation of AKT. They found that Tb4 interrupted the
movement of AKT into PI3K, blocking the phosphorylation of
AKT by PI3K in HSCs treated with PDGF-bb (110).

Tb4 Promotes Hair Growth
In recent years, Tb4 has been closely related to hair follicle
development and hair growth. Topical application of Tb4
promotes hair growth in rats and mice and it stimulates early
differentiation of rat epithelial progenitor cells (113). Moreover,
Tb4 may act on hair follicle reconstruction by upregulating
fibronectin expression in human dermal papilla cells (114).
After shaving, the hair of Tb4-overexpressing transgenic mice
grew faster and longer than those of wild-type mice (115).
Moreover, in aged mice with sparse hair, Tb4 accelerated hair
growth for more than 26 weeks. After topical administration of
Tb4, the hair of nude mice grew faster and thicker than those of
normal mice (113). Tb4 accelerates hair growth by increasing the
proliferation of outer hair follicle root sheath cells, that is, hair
follicles grew better and proliferated faster in the Tb4 group than
in the control group when the outer hair follicle root sheath cells
were cultured in vitro (116).

Tb4 Alleviates Renal Fibrosis
Chronic kidney disease is characterized by abnormalities in renal
structure or function that last for more than 3 months and has an
adverse impact on the health of the patient (117). Endogenous Tb4
is dispensable in healthy kidneys. In contrast, a lack of endogenous
Tb4 exacerbated symptoms inmousemodels of glomerular disease
and angiotensin II-induced renal injury. The administration of
exogenous Tb4 or its metabolite Ac-SDKP revealed therapeutic
effects various experimental models of kidney disease, such as
glomerulonephritis, diabetic nephropathy, and hypertensive
nephropathy (118). In renal fibrosis, Tb4 is upregulated in
glomerulosclerosis and is required for the angiotensin II-induced
expression of plasminogen activator inhibitor-1) PAI-1 (119). In
addition, Tb4 treatment might alleviate renal fibrosis and tubular
epithelial cell apoptosis by inhibiting the TGF-b pathway in rats
with unilateral ureteral obstruction and chronic renal tubular
interstitial fibrosis (22).

Effect of Tb4 on Ulcerative Colitis and
Colon Cancer
Tb4 is expressed in the human intestine, where it modulates the
intestinal immune system (120). Moreover, it is considered to be
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TABLE 1 | Actions of Tb4 and mechanisms.

Encoded
gene
fragments

Actions Target
tissue

Indications Mechanism References

1-4 amino
acids

anti-
inflammatory

brain autoimmune
encephalomyelitis

suppresses the secretion of interleukin-8 and the activation of NF-kB significantly. (30)

1-4 amino
acids

anti-
inflammatory

liver ethanol- and
LPS-induced liver
injury

,inhibits the activation of NF-kB pathway, thereby preventing the production of proinflammatory
cytokines, such as tumor necrosis TNF-a, IL-1b, and IL-6.

(31)

1-4 amino
acids

anti-
inflammatory

brain fetal alcohol
spectrum
disorders

attenuates p38, ERK MAPKs, and NF-B pathway activation, and enhance miR-339-5p
expression induced by ethanol exposure in microglia.

(32)

1-4 amino
acids

anti-
inflammatory

eye dry eye
syndrome

reduces IL-1b, IL-6, TNF-aand IFN-g and CD4+/CCR5+T cells. (89)

1-4 amino
acids

anti-
inflammatory

liver hepatic ischemia-
reperfusion injury

activates AKT-Bad pathway and inhibits the expression of TNF-a and IL-6. (97)

1-4 amino
acids

anti-fibrosis liver liver fibrosis inhibits the Notch signaling, reduces the expression of NF-kB p65, inhibits PDGF-b-dependent
phosphorylation of AKT, and interrupts the movement of AKT into PI3K.

(110, 112,
133)

1-4 amino
acids

anti- fibrosis kidney renal fibrosis inhibits the TGF-b pathway. (22)

1-15
amino
acids

anti-
apoptosis

brain cerebral
ischemia/
reperfusion injury

upregulates GRP78 and downregulates CHOP and caspase-12. (26)

1-15
amino
acids

anti-
apoptosis

brain diseases
associated with
demyelination
disorders

up-regulates miR-200a, increases MBP synthesis after targeting Grb2 and thereby inactivating
c-Jun from inhibition of MBP synthesis; and inhibits OGD-mediated apoptosis after targeting
EGFR inhibitor (Mig-6), PI3K inhibitors (FOG2 and Pten) and an inducer (p53) of pro-apoptotic
genes, for AKT activation and down-regulation of p53.

(29)

1-15
amino
acids

anti-
apoptosis

heart myocardial
infarction

reduces caspase-8 activity, increases Bcl-XL protein expression. (74)

1-15
amino
acids

anti-
apoptosis

heart cardiovascular
disorders

decreases the expression and activity of caspase-3 and -9, which markedly increased the Bcl-
2/Bax ratio, and ILK-Akt activation.

(24)

1-15
amino
acids

anti-
apoptosis

eye corneal diseases decreases FasL-mediated activation of caspases-8 and -3 as well as H(2)O(2)-triggered
stimulation of caspases-9 and -3.

(64)

1-15
amino
acids

anti-
apoptosis

eye vision disorder inhibits caspase-2, -3, -8, and -9 activity. (63)

1-15
amino
acids

anti-
apoptosis

colon Crohn’s disease decreases TNF-a, IL-1b and IL-10 and decreases MPO activity and MDA content, increases
SOD activity.

(122)

17 – 23
amino
acids

promotes
hair growth

hair
follicle

depilation accelerates hair growth through the Wnt signaling pathway by increasing the mRNA levels of b-
catenin and Lef-1.

(58)

17 – 23
amino
acids

improves
wound
healing

skin full-thickness skin
defect SD rat
model

regulates VEGF, bFGF and LN-5. (98)

17 – 23
amino
acids

improves
wound
healing

skin mouse burn
model

Upregulates the expression of heat-shock proteins (HSP70), p-AKT and VEGF signaling
pathways.

(99)

17 – 23
amino
acids

stimulates
angiogenesis

heart myocardial
infarction

upregulates the expression of VEGF,
activates Akt-mediated signaling, promotes the ILK-Pinch-Parvin complex, and suppresses NF-
kB.

(14, 39, 79)

17 – 23
amino
acids

stimulates
angiogenesis

hind
limb

hindlimb
ischemia

upregulates various angiogenic factors, such as angiopoietin-1 and von Willebrand factor,
activates the PI3K/AKT signaling pathway, promotes the expression of angiopoietin2, VEGFA,
Notch3 and other cytokines in HUVECs

(15, 38, 43)

17 – 23
amino
acids

stimulates
angiogenesis

brain cerebral ischemia
and reperfusion

increases the level of Akt phosphorylation and the expression of eNOS in the cerebral cortex,
and regenerates blood vessels around the infarction.

(37)

40 – 43
amino
acids

increases
heart
function
post-
ischemia

heart rat model of
acute myocardial
ischemia-
reperfusion

decreases the level of MDA in serum and myocardial tissue and increases the activity of SOD. (132)
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effective in treating gastrointestinal disorders (121). In a mouse
colitis model resembling Crohn’s disease, AAV-Tb4-treated
mice displayed distinctly attenuated colon injuries and reduced
the apoptosis rates in colonic mucosal epithelia. AAV-Tb4
significantly reduced inflammatory cell infiltration and
alleviated oxidative stress in the inflamed colons of mice, as
evidenced by decreased myeloperoxidase activity and
malondialdehyde levels and increased superoxide dismutase
activity. AAV-Tb4 further modulated colonic TNF-a, IL-1b,
and IL-10 levels and suppressed the compensatory proliferation
of colonic epithelial cells (122).

In addition, Tb4 exerts a therapeutic effect on colon cancer.
The expression of Tb4 in rectal cancer stem cells was higher than
that in normal epithelial cells. Lentivirus was used to reduce
levels of Tb4 in rectal cancer stem cells, and interestingly, this
treatment reduced the tumor size and aggressiveness of
colorectal cancer stem cell-based xenografts in mice (123).
Frontiers in Endocrinology | www.frontiersin.org 8
Tb4 Alleviates Inflammation
Tb4 exhibits anti-inflammatory activities in different pathologies
(124) and reduces inflammation in the brain (26), liver (27), eye
(89), and heart diseases (80). Diverse mechanisms underlying the
inflammatory response via Tb4 regulation following injuries are
observed (125). NF-kB regulates the expression of various
inflammatory genes and is crucial in the inflammatory process
(126). Tb4 can downregulate NF-kB (127) and reduce levels of
numerous inflammatory cytokines such as TNF-a (128). It can
also prevent the activation of NF-kB by blocking the
phosphorylation of the inhibitory protein IkB, thereby
inhibiting proinflammatory cytokine production (31). Sosne
et al. demonstrated that in human epithelial corneal cells
stimulated with TNF-a, Tb4 significantly decreased NF-kB
activation, p65 subunit phosphorylation, and nuclear
translocation (127). Ping et al. reported that Tb4 could inhibit
TNF-a-induced NF-kB activation and block RelA/p65
TABLE 2 | Clinical trials of Tb4.

Phase Drug Indications Participants Dosage regimen Conclusions Status References

I chemosynthetic
Thymosin b4

acute
myocardial
infarction

40 healthy volunteers 42, 140, 420, or 1260 mg/
kg intravenous injections for
14 days.

There were no dose limiting toxicities or
serious adverse events.

completed (70)

I Recombinant
Human
Thymosin b4

acute
myocardial
infarction

54 healthy volunteers 0.05, 0.25, 0.5, 2.0, 5.0,
12.5 or 25.0 mg/kg in the
single-dose intravenous
injections trial and
in the multiple-dose
intravenous injections trial,
0.5, 2.0 and 5.0 mg/kg
were administered once rh-
Tb4 daily for 10 days

It was well tolerated and safe in healthy
people and suitable for use in a clinical
study for the treatment of acute
myocardial infarction.

completed (69)

II chemosynthetic
Thymosin b4

acute
myocardial
infarction

patients with acute
myocardial infarction

Not report Tb4 could protect and repair the heart
and reduce the volume of scars after
heart attack.

completed (71)

II chemosynthetic
Thymosin b4

congenital
heart surgery

12 children up to four
months of age

Tb4 at 5 mg/kg/dose, 12.5
mg/kg/dose, and
20 mg/kg/dose,
intravenous injections, and
given in the operating room
15–30 minutes before
cardiopulmonary bypass

Tb4 could improve ischemia-reperfusion
injury during congenital heart surgery.

completed (72)

II RGN-259
(Thymosin b4)

dry eye 9 patients with severe
dry eye

Each 8 mL plastic squeeze
bottle contained 2.0 mL fill
volume

Tb4 could tear increase film breakup
time and tear volume production.

completed (88)

II chemosynthetic
Thymosin b4

epidermolysis
bullosa

Approximately 35–40
patients with RDEB or
JEB, aged 2 or above

Not report Although as yet unproven, topically
applied Tb4 may prove to be an
extremely important addition to the
overall management of patients with this
potentially devastating disease.

Recruiting (103)

II Thymosin b4
Gel

stasis and
pressure
ulcers

143 total patients with
chronic cutaneous (stage
III/IV) pressure ulcers (full
thickness) and venous
stasis ulcers

0.01%, 0.03%, or 0.1%
Tb4 in the gel formulation

Tb4 could accelerate healing by almost
a month in those patients that did heal.

completed (104)

II Thymosin b4
Gel

venous stasis
ulcers

73 patients 0.01%, 0.03%, or 0.1%
Tb4 in the gel formulation
and treated for 84 days

Tb4 could accelerate wound healing
and that complete wound healing can be
achieved within 3 months in about 25%
of the patients.

completed (105)
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translocation and the sensitizing effects of its intracellular
binding partners PINCH-1 and integrin-linked kinase (128).
Furthermore, some studies have provided preliminary evidence
on the ability of Tb4 to resolve inflammation by promoting
noncanonical autophagy associated with the activation of the
DAP kinase anti-inflammatory function (129–132).

In summary, Tb4 exerts therapeutic effects on various injuries
or diseases of different tissues, while the underlying mechanisms
have some similarities and differences (Tables 1 and 2).
CONCLUSION AND FUTURE
PERSPECTIVES

Tb4 is a natural endogenous repair factor that is activated during
development and tissue damage. This peptide exerts various
biological activities, such as inhibition of inflammation and
apoptosis as well as promotion of proliferation and
angiogenesis. Moreover, animal experiments and clinical
studies have reported that Tb4 exerts therapeutic effects on
several diseases or injuries, such as myocardial infarction and
myocardial ischemia-reperfusion injury, xerophthalmia, liver
and renal fibrosis, ulcerative colitis and colon cancer, and skin
trauma. The regulation of Tb4 in some signaling pathways,
including the PI3K/Akt/eNOS pathway, Notch pathway,
TGFb/smad pathway, Wnt pathway, and apoptosis pathway,
might serve as the underlying mechanisms of its effects.

Judging from the updated literature outlined in this review,
there is burgeoning interest in the functions and applications of
Tb4. It could be speculated that Tb4might be a safe and efficacious
new drug for various clinical indications in the near future.
Frontiers in Endocrinology | www.frontiersin.org 9
However, the remarkable progress in both basic research and
clinical trials has also raised new questions, such as thorough
elucidation of the mechanisms of some applications, and
exploration of more promising indications. The upstream and
downstream components regulate Tb4 functions need to be
thoroughly delineated, especially the upstream regulation
mechanism. Moreover, the crosstalk of the downstream
signaling pathways of Tb4 should be further clarified.
Furthermore, some functions of Tb4, such as the inhibition of
inflammation and apoptosis as well as promotion of proliferation
and angiogenesis, should be explored furtherly to find new
clinical indications. Currently, our group and others are
conducting preclinical studies to demonstrate the efficacy of
Tb4 in various animal models, with the goal of pushing new
indications into clinical trials. In addition, new technologies in
pharmacy, pharmaceutics and material science should be used to
promote the application of Tb4 in different indications in a more
appropriate dosage form.
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