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A B S T R A C T   

Systems medicine is founded on a mechanism-based approach and identifies in this way specific therapeutic 
targets. This approach has been applied for the transcription factor nuclear factor (erythroid-derived 2)–like 2 
(Nrf2). Nrf2 plays a central role in different pathologies including neurodegenerative disorders (NDs), which are 
characterized by common pathogenetic features. We here present wide scientific background indicating how a 
natural bioactive molecule with antioxidant/anti-apoptotic and pro-autophagy properties such as the ozone (O3) 
can represent a potential new strategy to delay neurodegeneration. Our hypothesis is based on different evidence 
demonstrating the interaction between O3 and Nrf2 system. Through a meta-analytic approach, we found a 
significant modulation of O3 on endogenous antioxidant-Nrf2 (p < 0.00001, Odd Ratio (OR) = 1.71 95%CI:1.17- 
2.25) and vitagene-Nrf2 systems (p < 0.00001, OR = 1.80 95%CI:1.05-2.55). O3 activates also immune, anti- 
inflammatory signalling, proteasome, releases growth factors, improves blood circulation, and has antimicro-
bial activity, with potential effects on gut microbiota. Thus, we provide a consistent rationale to implement 
future clinical studies to apply the oxygen-ozone (O2-O3) therapy in an early phase of aging decline, when it is 
still possible to intervene before to potentially develop a more severe neurodegenerative pathology. We suggest 
that O3 along with other antioxidants (polyphenols, mushrooms) implicated in the same Nrf2-mechanisms, can 
show neurogenic potential, providing evidence as new preventive strategies in aging and in NDs.   

1. Introduction 

Life span has almost doubled in the last century (WHO, 2011, 
Wyss-Coray, 2016), and consequently aging-specific diseases are 
becoming prevalent (Moskalev et al., 2017). However, the pathophysi-
ologic mechanisms underlying most of them are still poorly understood 
and challenges regarding treatments efficacy and costs persist. 

Neurodegenerative diseases (NDs, Alzheimer’s disease, AD; Parkin-
son disease, PD; amyotrophic lateral sclerosis, ALS, Huntington Disease, 

HD) are the most prevalent cognitive and motor disorders of the elderly. 
These aging-specific diseases are characterized by the loss of homeo-
stasis during aging, leading to low-grade stress by pathologic formation 
of Reactive Oxygen Species (ROS), chronic inflammation, mitochondrial 
dysfunction and metabolic unbalance (Dugger, Dickson, 2017). In 
addition, these pathophenotypes are determined by abnormal aggrega-
tion of specific proteins (Yanar et al., 2020), given the connection be-
tween excessive ROS accumulation and impairment in proteostasis 
network. 
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Despite their distinct causative factors and clinical symptoms, these 
diseases as well as aging have common pathogenetic features (Aso et al., 
2012). This implicates potentiality in the identification of therapeutic 
targets on a set of disease phenotypes and physiological conditions that 
are mechanistically linked. Thus, contrary to a hitherto linear approach 
that considered one disease, one medicine, to date there is a need for a 
new concept of therapy condensed as “several diseases, one medicine”. 
In this way, diseases are diagnosed not only by clinical symptoms, but 
mainly by the underlying molecular signatures (Goh et al., 2007). Based 
on this network medicine approach, Cuadrado et al., 2018, Cuadrado 
et al., 2019 reported extensive evidence about the central role playing 
by nuclear factor erythroid-derived 2–like 2 (Nrf2). Nrf2 is widely 
known and investigated as a master regulator of multiple cytoprotective 
responses and as a key molecular node within a cluster of a wide spec-
trum of diseases, including NDs. Moreover, Nrf2 activation is impaired 
in aging by the involvement of microRNA (Zhang et al., 2015, Schmidlin 
et al., 2019, Silva-Palacios et al., 2018). This suggests that Nrf2 could 
represent a common therapeutic and systems medicine target, for aging 
and for its related disorders. Nrf2 can transcriptionally modulate the 
cytoprotective genes belonging to the vitagene network. This network 
regulates endogenous cellular defense mechanisms, and involves redox 
sensitive genes such as members of the Heat Shock Proteins (HSP) family 
(Heme-Oxigenase HO-1, Hsp70), but also sirtuins and the thioredoxin 
(Trx)/thioredoxin reductase (TrxR1) system (Calabrese et al., 2010). 

Based on this rationale, in this review we present wide scientific 
background indicating how a natural bioactive molecule with antioxi-
dant property such as the ozone (O3) can be indicated as a potential new 
strategy to delay neurodegeneration. This hypothesis is based on the 
widely demonstrated evidence regarding the interaction between O3 
and Nrf2 (Galie et al., 2018, Siniscalco et al., 2018, Re et al., 2014, 
Vaillant et al., 2013). We first describe the relevant, well known and 
documented molecular mechanisms related to 
antioxidant/anti-apoptotic/pro-autophagy processes targeted by the O3 
administration via Nrf2 biological pathway. Secondarily, we report a list 
of the main stress oxidative biomarkers modulated by the O3 treatment 
via Nrf2 and that, in turn are strongly involved in NDs pathophysiology 
as well as in aging mechanisms. Different meta-analyses have been 
performed to demonstrate the effect in terms of Odd Ratio (OR) of O3 on 
endogenous antioxidant-Nrf2 and vitagene-Nrf2 systems. 

We thus provide scientific evidence to build a consistent rationale to 
apply for the first time the Oxygen-Ozone (O2-O3) therapy in an early 
phase of aging decline, when it is still possible to intervene, before to 
develop a potential neurodegenerative pathology. 

2. The Ozone (O3) molecule and the Oxygen-Ozone (O2-O3) 
therapy 

O3 is a triatomic gaseous molecule which has been used as a powerful 
oxidant in medicine for more than 150 years (Elvis, Ekta, 2011). In 
nature, O3 is generated during storms due to the electrical discharges of 
the rays that react with atmospheric O2 to produce O3. In humans, a 
revolutionary discovery leaded to demonstrate that neutrophils isolated 
from human peripheral blood and coated with antibodies can catalyse 
the generation of O3 by a water oxidation pathway, leading to efficient 
killing of bacteria (Wentworth et al., 2002, Babior et al., 2003, Lerner, 
Eschenmoser, 2003). 

In 1785, Van Mauren was the first identifying the distinctive odor of 
O3. The actual gas was later discovered by the German chemist, Chris-
tian Friedrich Schonbein at the University of Basel in Switzerland on 
March 13th, 1839 when working with a voltaic pile in the presence of O2 
(Altman, 2007). Friederich noticed the emergence of a gas with an 
electric and pungent smell, and named it ozone, which is derived from 
the Greek word for smell (Bocci, 2011). O3 was used as first antiseptic for 
operating rooms and to disinfect surgical instruments in 1856, and in 
1860 the first O3 water treatment plant was built in Monaco to disinfect 
water (Altman, 2007). Nikola Tesla patented the first portable O3 

generator in 1896 in the United States. The physicist, Joachim Hansler 
invented the first reliable O3 generator, and this was the breakthrough in 
the use of O3 for medical applications. This invention is considered the 
prelude to the ozonated autohemotherapy procedure and served as the 
basis for O3 therapy expansion over the last 40 years. 

The O2-O3 therapy is a non-invasive, non-pharmacological, no-side 
effect and low-cost procedure applied in medicine for the treatment of 
more than 50 pathological processes, whose alterations in endogenous 
oxidative-antioxidative balance play a crucial role. Different clinical 
trials evidenced the effectiveness of this therapy in the treatment of 
degenerative disorders such as multiple sclerosis (Smith et al., 2017, 
Delgado-Roche et al., 2017, Ameli et al., 2019), but also cardiovascular, 
peripheral vascular, neurological, orthopaedic, gastrointestinal and 
genitourinary pathologies (Bocci, 2011, Elvis, Ekta, 2011, Re et al., 
2008, Bocci, 2012, Smith et al., 2017, Braidy et al., 2018); fibromyalgia 
(Moreno-Fernandez et al., 2019, Tirelli et al., 2019); skin dis-
eases/wound healing (Fitzpatrick et al., 2018, Wang, 2018); dia-
betes/ulcers (Martinez-Sanchez et al., 2005, Guclu et al., 2016, Rosul, 
Patskan, 2016, Izadi et al., 2019, Ramirez-Acuna et al., 2019); infectious 
diseases (Smith et al., 2017, Mandhare et al., 2012, Song et al., 2018), 
including the recent global pandemic disease of coronavirus disease 
2019 (COVID-19) (Zheng et al., 2020); dentistry (Isler et al., 2018, 
Khatri et al., 2015, Srikanth et al., 2013, Azarpazhooh et al., 2009); lung 
diseases (Hernandez Rosales et al., 2005); osteomyelitis (Bilge et al., 
2018). The potential role of O2-O3 as an adjuvant therapy for cancer 
treatment has been also suggested in in vitro and animal studies as well 
as in isolated clinical reports (Clavo et al., 2018). 

At present, we have commenced a randomized double-blind clinical 
trial with the aim to test the efficacy of this therapy in a cognitive frailty 
cohort, a grant approved by the Italian Minister of Health (RF-2016- 
02363298). This pilot study will permit to validate the O2-O3 therapy in 
an early phase of cognitive decline, when it is still possible to intervene, 
before to develop a potential neurodegenerative pathology. 

To date, the O2-O3 therapy acquires a further prestigious signifi-
cance, after the medicine Nobel prize for “discovery of how cells sense 
oxygen” in 2019. Indeed, O2 is the most vital element required for 
human life and it is the key to good health; O3 is O2 with an extra 
molecule added. The O2 availability affects genes expression of different 
factors (HIFs, Hypoxia Inducible Factors), leading to the activation of 
trophic proteins (VEGF, Vascular Endothelial Growth Factor; PDGF, 
Platelet-derived growth factor) and consequently to specific biological 
processes, including erythropoiesis, angiogenesis and anaerobic glucose 
metabolism (Zhou et al., 2019). O3 plays a role of cellular adapter to 
hypoxia, because it is well known its effects in increasing the levels of 
VEGF, PDGF, HIF (Curro et al., 2018, Zhang et al., 2014, Re et al., 2010), 
exactly as the cell does when there is no O2 available. 

3. Focus on the biological activities of the ozone (O3): 
antioxidant property 

Oxidative stress is a condition where ROS and Nitrogen Species 
(RNS) production exceeds the cellular antioxidant defence system, 
leading to the imbalance between the two systems and this may 
contribute to the neuronal damage and the abnormal neurotransmis-
sion. It is widely known its implication in the pathogenesis and pro-
gression of NDs (Singh et al., 2019). Brain and mitochondria are the 
most involved systems due to their high sensitivity to oxidative damage 
caused by free radicals. Oxidative damage may impair the cells in their 
structure and function, being cause and effect of a mitochondrial 
reduced activity. The damage is not confined to the brain but also 
evident in peripheral cells and tissues. 

ROS and RNS are also major factors in cellular senescence that leads 
to increase number of senescent cells in tissues on a large scale (Liguori 
et al., 2018). Cellular senescence is a physiological mechanism that stops 
cellular proliferation in response to damages that occur during replica-
tion. Senescent cells acquire an irreversible senescence-associated 
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secretory phenotype (SASP), involving secretion of soluble factors (in-
terleukins, chemokines, and growth factors), degradative enzymes like 
matrix metalloproteases (MMPs), and insoluble proteins/extracellular 
matrix (ECM) components. 

Nrf2 is a member of the CNC-basic leucine zipper (CNC-bZIP) family 
of transcription factors. Under basal condition, Nrf2 binds to its 
repressor Keap1 (Kelch-like ECH-associated protein 1), an adapter be-
tween Nrf2 and Cullin 3 protein, which leads to ubiquitination followed 
by proteasome degradation. This Keap1-mediated degradation activity 
requires two reactive cysteine residues (Cys273 and Cys288). 

When O3 is administrated, it dissolves immediately in the plasma/ 
serum and it reacts with PUFA (polyunsaturated fatty acids), leading to 
the formation of the two fundamental messengers: hydrogen peroxide 
(H2O2) as a ROS and 4-hydroxynonenal (4HNE) as a lipid oxidation 
product (LOP) (Bocci et al., 1998) (Fig. 1). ROS are the early and 
short-acting messengers, while LOPs are late and long-lasting messen-
gers. LOPs diffuse into all cells and inform them of a minimal oxidative 
stress. After the oxidative/electrophilic stress challenge (4HNE, (Ishii 
et al., 2004), other aldehydes, (Levonen et al., 2004)), induced by O3 
(Galie et al., 2018, Siniscalco et al., 2018, Re et al., 2014, Vaillant et al., 
2013), modification of the cysteine residues of Keap1 (S-HNE or S–S) 
inhibits ubiquitin conjugation to Nrf2 by the Keap1 complex (Brige-
lius-Flohe, Flohe, 2011), provoking the nuclear accumulation of Nrf2. 
Once in the nucleus, Nrf2 dimerizes and binds to cis-acting DNA AREs 
(Antioxidant Response Elements) in genes such as HO-1, a gene encod-
ing enzyme that catalyses the degradation of heme in carbon monoxide 
(CO) and free iron, and biliverdin to bilirubin. CO acts as an inhibitor of 
another important pathway NF-κB (Nuclear Factor Kappa B Subunit 1) 
signalling, which leads to the decreased expression of pro-inflammatory 
cytokines, while bilirubin also acts as an important lipophilic antioxi-
dant. Furthermore, HO-1 directly inhibits the pro-inflammatory cyto-
kines and activates the anti-inflammatory cytokines, thus leads to 
balancing of the inflammatory process (Ahmed et al., 2017). Our 

research group confirmed that mild ozonisation, tested on in vitro sys-
tems, induced modulation of genes, including HO-1 (Scassellati et al., 
2017). (Fig. 1). 

In addition, Nrf2 regulates also the constitutive and inducible 
expression of antioxidants including, but not limited to, Superoxide 
Dismutases (SOD), Glutathione Peroxidase (GSH-Px), Glutathione-S- 
Transferase (GST), Catalase (CAT), NADPH quinone oxidoreductase 1 
(NQO1), phase II enzymes of drug metabolism and HSPs (Galie et al., 
2018, Bocci and Valacchi, 2015, Pedruzzi et al., 2012) (Fig. 1). 

A further mechanism involves casein kinase 2 (CK2), another regu-
lator of the Nrf2 activity through its phosphorylation. It has been 
demonstrated that O3 influenced the CK2 levels together with Nrf2 
phosphorylation, reducing oxidative stress and pro-inflammatory cyto-
kines in multiple sclerosis patients (Delgado-Roche et al., 2017). Simi-
larly, O3 inhibits oxidative stress through inhibition of the 
mitogen-activated protein kinase phosphatase (MAPK) 1 signalling 
pathway (Wang et al., 2018a) (Fig. 1A). 

Oxidative stress is one of the major drivers of protein misfolding that, 
accumulating and aggregating as insoluble inclusions can determine 
neurodegeneration (Hohn et al., 2020, Knowles et al., 2014). It is known 
that Nfr2 promotes the clearance of oxidized or otherwise damaged 
proteins through the autophagy mechanism (Tang et al., 2019). Inter-
estingly, also O3 can modulate the degradation protein systems, not only 
via Nrf2 pathway, but also via activation of the AMP-activated protein 
kinase (AMPK)/mammalian target of rapamycin (mTOR) signaling 
pathway, as demonstrated in Zhao et al. (2018) (Fig. 1B). 

O3 can protect against overproduction of nitric oxide (NO), when NO 
is a toxic oxidant. NO can rapidly react with other free radicals such as 
O2
− to generate highly reactive oxidant peroxinitrite (ONOO− ) and other 

RNS, which in turn damage the biomolecules (e.g., lipids, protein, DNA/ 
RNA), playing thus a key role in chronic inflammation and neuro-
degeneration (Massaad, 2011, Toda et al., 2009). It has been demon-
strated that O3 downregulates inducible nitric oxide synthase (iNOS), 

Fig. 1. Molecular mechanisms linked to antioxidant/pro-authophagy activities of ozone (O3) via Nfr2 signalling. 
In the absence of stimuli, Nrf2 (nuclear factor erythroid 2–related factor 2) binds to its repressor Keap1 (kelch-like ECH-associated protein), an adapter between Nrf2 
and Cullin 3 (Cul3) protein, which leads to ubiquitination followed by proteasome degradation. When O3 is administrated, it dissolves immediately and it reacts with 
PUFA (Poly-Unsaturated Fatty Acids) leading to the formation of fundamental messengers such as hydrogen peroxide (H2O2), 4-hydroxynonenal (4HNE) and lipid 
oxidation products (LOPs). These messengers can influence the modifications of cysteine residues present in Keap1 (S-HNE or –S–S) inhibiting ubiquitin conjugation 
to Nrf2 by the Keap1 complex and provoking the nuclear accumulation of Nrf2. Once in the nucleus, Nrf2 dimerizes and binds to cis-acting DNA AREs (Antioxidant 
Response Elements) in different genes: Heme Oxygenase 1 (HO-1), Superoxide dismutases (SOD), Glutathione peroxidase (GSH-Px), Glutathione-S-Transferase (GST), 
Catalase (CAT), GSH-reductase (GR), NADPH quinone oxidoreductase 1 (NQO1), Heat Shock Proteins (HSPs), Cytochrome P450 monooxygenase (CYP450), Thioredoxin 
reductase (TrxR), phase II enzymes (UDP-glucuronosyltransferases, UGTs; N-acetyltransferases, NATs, sulfotransferases, SULTs). 
A) O3 involves casein kinase 2 (CK2), a regulator of the Nrf2 activity through its phosphorylation, and MAPK (mitogen-activated protein kinase) signalling pathway, 
that is inhibited with consequent inactivation of oxidative stress and apoptosis by O3 administration. 
B) O3 modulates the degradation protein systems (autophagy), via activation of the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) 
signaling pathway. 
C) O3 downregulates inducible nitric oxide synthase (iNOS), which generates nitric oxide (NO) via NF-κB (Nuclear Factor Kappa B Subunit 1) pathway. (CO =
carbon monoxide). 
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which generates NO (Manoto et al., 2018, Smith et al., 2017) via NF-κB 
signalling (Fig. 1C). 

4. Focus on the biological activities of the ozone (O3): anti- 
apoptotic mitochondrial property 

Mitochondrial dysfunction is one of the main features of the aging 
process, particularly in organs requiring a high-energy source such as 
the heart, muscles, brain, or liver. Neurons rely almost exclusively on the 
mitochondria, which produce the energy required for most of the 
cellular processes, including synaptic plasticity and neurotransmitter 
synthesis. Mitochondrial disfunctions cause increase in ROS for lowered 
oxidative capacity and antioxidant defence, with consequent increased 
oxidative damage to protein and lipids, decreased ATP production and 
accumulation of DNA damage (Garcia-Escudero et al., 2013, Reutzel 
et al., 2020). Moreover, mitochondrial bioenergetic dysfunction and 
release of pro-apoptotic mitochondrial proteins into the cytosol initiate a 
variety of cell death pathways. 

Nrf2 transcribes several genes not only those implicated in antioxi-
dant expression and energy regulation, but also those involved in 
mitochondria biogenesis: increases the mitophagy, mitochondrial levels 
of antioxidant enzymes, and resistance to redox regulated mitochondrial 
permeability transition pore opening (Holmstrom et al., 2016). Multiple 
lines of evidence showed that Nfr2 activation is part of the retrograde 
response aimed at restoring mitochondrial functions after stress insults, 
and that the impairment of Nrf2 functions is a hallmark of many 
mitochondrial-related disorders (Shan et al., 2013). 

It has been demonstrated that O3 administration can act on specific 
mechanisms to promote cell survival and proliferation, blocking the 
apoptotic processes. In particular, O3 decreases the expression of 

caspases 1-3-9, HIFα, Tumor Necrosis Factor-a (TNF-α), Bcl-2-associated X 
protein (Bax), poly (ADP-ribose) polymerase 1 (PARP-1) and p53 genes 
(Fig. 2) (Yong et al., 2017, Guclu et al., 2016, Wang et al., 2018a). Bax is 
located in the mitochondrial membranes and exerts pro-apoptosis effect 
through the mitochondrial pathway, promoting cytochrome C activa-
tion (Mac Nair et al., 2016); p53 and Caspase-3 are executive molecules 
of apoptosis by blocking cell cycle (Wang et al., 2016). Enzymes such as 
SOD, CAT, and GSH-Px, can regulate p53, Bax and Bcl-2 (BCL2 
Apoptosis Regulator) (Fig. 2). 

Moreover, O3 stimulates the Kreb’s cycle in the mitochondria by 
enhancing the oxidative carboxylation of pyruvate and stimulating the 
production of adenosine triphosphate (ATP) (Guven et al., 2008). It also 
causes a significant reduction of nicotinamide adenine dinucleotide 
(NADH), an increase of the coenzyme A levels to fuel the Kreb’s cycle 
and oxidizes cytochrome C (Brigelius-Flohe, Flohe, 2011, Elvis, Ekta, 
2011). 

O3 treatment was proven to reduce mitochondrial damage in a rat 
heart following ischemia-reperfusion (Meng et al., 2017), as well as in a 
rat brain and cochlea following noise-induced hearing loss (Nasezadeh 
et al., 2017). Moreover, in vitro, O3 increased the length of the mito-
chondrial cristae and the content of mitochondrial Hsp70 (Costanzo 
et al., 2018). 

5. Pro-oxidation and antioxidant defence biomarkers influenced 
by ozone (O3) and implicated in aging processes and in 
neurodegenerative disorders (NDs) 

5.1. Stress-oxidant biomarkers modulated by the O3 effect 

A list of biomarkers (29 in total) implicated in oxidative stress, in 

Fig. 2. Molecular mechanisms linked to anti-apoptotic property of ozone (O3) via pro-apoptotic molecules inactivation. 
Various apoptotic stimuli, ischemia, Reactive Oxygen Species, ROS, ipoxia can activate directly p53 that in turn can play a role as transcription factor and activate the 
expression of pro-apoptotic genes. Among these, Bak (Bcl-2 homologous antagonist/killer) and Bax (Bcl-2-associated X protein) can stimulate in mitochondrial 
membrane the activation of Cytochrome C that in turn activates Apaf1 (Apoptotic protease activating factor-1) and caspase 9 to close the circle to stimulate the 
activity of caspase 3. Enzymes such as SOD (Superoxide dismutase), CAT (catalase), and GSH-Px (glutathione peroxidase), can regulate p53, Bax and Bcl-2. O3 
administration decreases the expression of caspases 1-3-9, Hypoxia-inducible factor (HIFα), Tumor Necrosis Factor-α (TNF-α), Bax and p53 genes. (BID (BH3-interacting 
domain death agonist), Nrf2 (Nuclear Factor Erytroid 2-related factor 2), CUL3 (Cullin 3), Keap 1 (Kelch-like ECH-associated Protein), H2O2 (Hydrogen Peroxide), 
4HNE (4-hydroxynonenal), LOPs (Lipid Oxidation Products), Cyt C (Cytochrome C), PUFAs (Poly-Unsaturated Fatty Acid), AREs (Antioxidant Response Elements)). 
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Table 1 
List of the pro-oxidation and antioxidant defence biomarkers influenced by ozone (O3) and implicated in neurodegenerative disorders (NDs) as well as in aging 
processes.  

Ozone 
biomarkers 

Name and Function Involvement in NDs Involvement in Aging processes 

4-HNE 4-Hydroxynonenal: a common aldehyde byproduct of lipid 
peroxidation during oxidative stress. 4-HNE is highly reactive 
and primarily produced in the brain via lipid peroxidation of 
arachidonic acid, a highly abundant omega-6 polyunsaturated 
fatty acids (PUFA) component of neuronal membranes. HNE 
may modify the ATP synthase, the final step in the production of 
ATP from electron transport chain (ETC) inside mitochondria. 4- 
HNE activates Nrf2 by alkylating thiol groups of cysteine residue 
in Keap1. 

(Moldogazieva et al., 2019, Ayala and 
Munoz, 2014, Baker et al., 2015) 

(Benedetti et al., 2014, Csala et al., 2015) 

8-OHdG 8-hydroxydeoxyguanosine (8-Oxo-2’-deoxyguanosine (8-oxo- 
dG): oxidized derivative of deoxyguanosine. Its concentrations 
within a cell are a measurement of oxidative stress (DNA 
oxidation). Reactive oxygen species (ROS) attack guanine bases 
in DNA easily and form 8-hydroxydeoxyguanosine, which can 
bind to thymidine rather than cytosine; thus, the level of 8- 
OHdG is generally regarded as a biomarker of mutagenesis 
consequent to oxidative stress. 

(Wang et al., 2019c, Nakabeppu 
et al., 2007, Poulsen et al., 2014,  
Polidori et al., 1999) 

(Mecocci et al., 2018) 

AOPP Advanced Oxidation Protein Products: are a group of oxidatively 
modified protein products containing dityrosine, pentosidine, 
and carbonyl-containing products generated by reactive oxygen 
species (ROS) or formed via myeloperoxidase reaction during 
oxidative/chlorine stress. They are biomarkers of oxidant- 
mediated protein damage. 

(Wang et al., 2019c, Cristani et al., 
2016) 

(Maciejczyk et al., 2019, Cakatay et al., 2008,  
Komosinska-Vassev et al., 2012, Rusanova et al., 
2018, Qing et al., 2012, Silva et al., 2015, Muller 
et al., 2015) 

CAT Catalase: it catalyzes the decomposition of hydrogen peroxide to 
water and oxygen. It is a scavenger enzyme of reactive oxygen 
species (ROS), protecting the cell from oxidative damage by 
ROS. 

(Feitosa et al., 2018) (Veal et al., 2018) 

FRAP Ferric Reducing the Ability of Plasma: total antioxidant capacity 
of plasma. 

(Ademowo et al., 2017) (Muller et al., 2015, Rizvi et al., 2006) 

Fructolysine It is an Amadori adduct of glucose to lysine. It is a precursor of 
the advanced oxidation protein products, which are induced by 
oxidative stress, and induces oxidative stress. 

- - 

GR Glutathione reductase (or glutathione-disulfide reductase, GSR): 
it catalyses the reduction of glutathione disulfide (GSSG) to the 
sulfhydryl form glutathione (GSH), which is a critical molecule 
in resisting oxidative stress and maintaining the reducing 
environment of the cell. 

(Feitosa et al., 2018, Liu et al., 2004,  
Rougemont et al., 2002) 

(Veal et al., 2018) 

GSH Glutathione: it is antioxidant, capable of preventing damage to 
important cellular components caused by reactive oxygen 
species (ROS). It maintains cellular thiol status. 

(Mazzetti et al., 2015, Liu et al., 2004, 
Gu et al., 2015, Rougemont et al., 
2002, Oliveira, Laurindo, 2018) 

(Maciejczyk et al., 2019, Teskey et al., 2018, Oliveira, 
Laurindo, 2018) 

GSH-Px/GPx Glutathione peroxidase: it has peroxidase activity whose main 
biological role is to protect the organism from oxidative damage. 
The biochemical function is to reduce lipid hydroperoxides to 
their corresponding alcohols and to reduce free hydrogen 
peroxide to water. 

(Mazzetti et al., 2015, Gu et al., 2015, 
Rougemont et al., 2002) 

(Maciejczyk et al., 2019, Veal et al., 2018) 

GST Glutathione S-transferase: it is phase II metabolic isozyme, 
known for the ability to catalyze the conjugation of the reduced 
form of glutathione (GSH) to xenobiotic substrates for the 
purpose of detoxification. 

(Mazzetti et al., 2015, Gu et al., 2015, 
Rougemont et al., 2002) 

(Veal et al., 2018) 

HIF-1α Hypoxia-inducible factor (HIF)-1alpha: is a subunit of a 
heterodimeric transcription factor hypoxia-inducible factor 1 
(HIF-1). It is a basic helix-loop-helix PAS domain containing 
protein and is considered as the master transcriptional regulator 
of cellular and developmental response to hypoxia. 

(Merelli et al., 2018) (Yeo, 2019) 

HO-1 Heme-Oxygenase-1: it catalyzes the conversion of heme into free 
iron, carbon monoxide and biliverdin. It possesses two well- 
characterized isoforms: HO-1 and HO-2. Under brain 
physiological conditions, the expression of HO-2 is constitutive, 
abundant and ubiquitous, whereas HO-1 mRNA and protein are 
restricted to small populations of neurons and neuroglia. HO-1 is 
an inducible enzyme that has been shown to participate as an 
essential defensive mechanism for neurons exposed to oxidant 
challenges, being related to antioxidant defenses in certain 
neuropathological conditions. 

(Facchinetti, 2020) (Schipper et al., 2019) 

HSP70 Heat-Shock Protein 70: it is essential for the folding and repair of 
damaged proteins. During stressful conditions, such as elevated 
temperature, it prevents protein aggregation, by facilitating the 
refolding or elimination of misfolded proteins. These 
mechanisms serve to promote cell survival conditions that would 
otherwise result in apoptosis. 

(Lackie et al., 2017) (Martinez de Toda, De la Fuente, 2015) 

IMA Ischemia-modified albumin: it measures ischemia in the blood 
vessels 

(Altunoglu et al., 2015, Can et al., 
2013) 

- 

(continued on next page) 
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endogenous antioxidant and vitagene systems are showed in Table 1. 
These biomarkers have been studied and found modulated after the O2- 
O3 therapy in more of 150 studies performed in different in vivo (human 
and animal models) and in vitro samples and conditions. In Table 1, we 
also reported the relative functions of these biomarkers. 

From these 29 biomarkers, we focused, in this section, on those 
implicated in endogenous antioxidant-Nrf2 pathway (GSH; GSH-Px; 
glutathione reductase, GR; SOD; CAT; 4HNE; Advanced Oxidation Pro-
tein Products, AOPP in bold in Table 1). Where it was possible (available 
studies), we performed meta-analyses for these biomarkers on human 
(see supplementary material). The results showed significant increased 
levels of the SOD-CAT-GSH-Px-GSH-GST-GR after O3 administration 
(Fig. 3, Random model, Z = 6.15, p < 0.00001, OR = 1.71 95%CI:1.17- 
2.25; even after Bonferroni correction 0.05/6 = 0.0083). Similar results 
were obtained even considering single markers, except for GR (Z = 1.04; 
p = 0.30) and GSH (Z = 0.80, p = 0.42). GR has been investigated only in 
two studies, coming from the same authors (Hernandez Rosales et al., 
2005). Thus, there are not enough evidence on its single real involve-
ment. Concerning GSH, Diaz-Luis et al., (Díaz-Luis et al., 2018) is the 

only study showing a negative effect of O3. As we followed the criteria 
for which the data were extracted before and after O3 treatment (see 
supplementary material), this study found an increased GSH levels after 
O3 administration, only when the authors performed the comparisons 
with control group of healthy subjects (in a sort of postconditioning). 
Thus, if we eliminated this study, the results of the single meta-analysis 
of GSH highlighted its positive increase determined by the O3 treatment 
(Z = 2.30; p = 0.02, data not shown). 

High heterogeneity in effect size across the studies (P < 0.00001, I2 =

97%) was observed in these meta-analyses. This is essentially explained 
by the presence of different factors: the type of pathology, different 
concentration of O3 linked to different administration procedures and 
duration time treatments, age of the sample (supplementary material 
Table 1S). 

Interestingly, different studies have been performed on aging- 
specific conditions. A recent work (El-Mehi, Faried, 2020) demon-
strated that antioxidant properties of O3 can ameliorate age-associated 
structural alterations of the rat cerebral cortex, improving age- related 
oxidative stress reflected in the histopathological and 

Table 1 (continued ) 

Ozone 
biomarkers 

Name and Function Involvement in NDs Involvement in Aging processes 

LPO Lipid peroxide: is the oxidative degradation of lipids. (Feitosa et al., 2018, Negre-Salvayre 
et al., 2010) 

(Negre-Salvayre et al., 2010) 

MDA Malondialdehyde: is a marker for oxidative stress. It is a reactive 
aldehyde produced by lipid peroxidation of polyunsaturated 
fatty acids. 

(Feitosa et al., 2018, Wang et al., 
2019c, Ayala and Munoz, 2014) 

(Csala et al., 2015, Maciejczyk et al., 2019) 

MPO Myeloperoxidase: is a peroxidase enzyme. It requires heme as a 
cofactor. It is expressed in neutrophil and monocyte, and is 
implicated in various stages of inflammatory conditions with the 
production of a variety of potent oxidants. 

(Ray, Katyal, 2016, Maki et al., 2019) (Son et al., 2005) 

Nfr2/CK2 Nuclear factor erythroid 2-related factor 2: is a basic leucine 
zipper (bZIP) protein that regulates the expression of antioxidant 
proteins that protect against oxidative damage triggered by 
injury and inflammation. 
Casein kinase 2: a serine/threonine-selective protein kinase 
implicated in cell cycle control, DNA repair, regulation of the 
circadian rhythm, and other cellular processes. Regulator of the 
Nrf2 activity through its phosphorylation. 

(Perez et al., 2011, Sivandzade et al., 
2019) 

(Sivandzade et al., 2019) 

NO Nitric Oxide: is an important cellular signaling molecule which is 
derived from L-arginine by nitric oxide synthase (NOS). It works 
as a retrograde neurotransmitter in synapses, allows the brain 
blood flow, and has important roles in intracellular signaling in 
neurons from the regulation of the neuronal metabolic status to 
the dendritic spine growth. It is able to perform post- 
translational modifications in proteins by the S-nitrosylation of 
the thiol amino acids, which is a physiological mechanism to 
regulate protein function. 

(Hannibal, 2016, Nakamura, Lipton, 
2020, Radi, 2018) 

(Picon-Pages et al., 2019) 

NO-3/NO-2 
(NOx) 

Nitrate/nitrite: an index of NO production (Hannibal, 2016, Nakamura, Lipton, 
2020, Radi, 2018) 

(Picon-Pages et al., 2019) 

NOS Nitric oxide synthase (inducible i II, endothelial e I): it catalyzes 
the production of nitric oxide (NO) from L-arginine. 

(Hannibal, 2016, Nakamura, Lipton, 
2020) 

(Jung et al., 2012) 

PCC/PCO Protein carbonyl content: catalyses the carboxylation reaction of 
propionyl CoA in the mitochondrial matrix. 

(Chevion et al., 2000, Fedorova et al., 
2014) 

(Cabiscol et al., 2014, Cakatay et al., 2008) 

PP Protein phosphatase: it is a serine/threonine phosphatase. It has 
been found to be important in the control of glycogen 
metabolism, muscle contraction, cell progression, neuronal 
activities, splicing of RNA, mitosis, cell division, apoptosis, 
protein synthesis, and regulation of membrane receptors and 
channels. 

(Braithwaite et al., 2012, Clark, 
Ohlmeyer, 2019) 

(Salminen et al., 2016) 

SOD superoxide dismutase: are the first and most important line of 
scavenger antioxidant enzyme defence systems against ROS and 
particularly superoxide anion radicals. There are two isoforms of 
SOD (cytoplasmatic CuZn-SOD or SOD1 and mitchondrial Mn- 
SOD or SOD2). 

(Feitosa et al., 2018, Schaffert, 
Carter, 2020) 

(Maciejczyk et al., 2019, Veal et al., 2018) 

TAC Total antioxidant capacity (Mota et al., 2019) (Maciejczyk et al., 2019) 
TAS Total antioxidant status (Mota et al., 2019)  
TBARS Thiobarbituric acid reactive substances: byproducts of lipid 

peroxidation (i.e. as degradation products of fats) 
(Vina et al., 2005) (Muller et al., 2015) 

TH Total Hydroperoxides: indicator of oxidative stress. (Tarafdar, Pula, 2018)  
TOS Total oxidant score (Mota et al., 2019)  

Note: In bold the genes involved in Nrf2 signalling 
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immunohistochemical alterations. The authors detected severe struc-
tural and cellular neurodegenerative changes in the frontal cortex of the 
aged rats. O3 administration produced significant downregulation of 
tissue Malondialdehyde (MDA), an index of oxidative stress, and upre-
gulation of GSH, SOD and CAT. Similarly, O3 influenced iNOS, 
caspase-3, glial fibrillary acidic protein (GFAP), Ki67 and acetylcholin-
esterase (AChE). These findings indicate reduction not only in oxidative 
stress, but also in apoptosis (down-regulation caspase-3) and in gliosisas 
(down-regulation GFAP), as well as improving in neurogenesis (upre-
gulation of Ki-67 expression) and in cholinergic plasticity (decrease 
AChE activity). The authors suggest that O3 might be useful for 
improving the age – related cognitive and memory deterioration, by 
increasing cholinergic communication. 

Safwat et al. (Safwat et al., 2014) demonstrated that O3 showed a 
beneficial effect on the aging reducing liver and kidney damage through 
its antioxidant property. O3 was efficient in elevating the reduced he-
patic and renal GSH contents as well as in normalizing hepatic GSH-Px 
activity of aged rats. Moreover, O3 succeeded in attenuating the elevated 
hepatic and renal MDA and protein carbonyls (PC) levels. 

Another work (El-Sawalhi et al., 2013) reported that O3 alleviated 
age-associated redox state imbalance, as evidenced by reduction of lipid 
and protein oxidation markers and lessening of lipofuscin deposition. 
Moreover, O3 restored GSH levels in brain and heart tissues, and 
normalized GSH-Px activity in the heart tissue of the aged-rats. O3 also 
mitigated age-associated energy failure in the heart and the hippocam-
pus, improved cardiac cytosolic Ca(2+) homeostasis and restored the 
attenuated Na(+), K(+) -ATPase activity in the hippocampus of these 
rats. 

Similarly, prophylactic administration of O3 in aged-rats normalized 
reduced GSH content, adenosine triphosphate/adenosine diphosphate 
ratio, mitochondrial SOD and complex IV (cytochrome-c oxidase) ac-
tivities. O3 improved glutathione redox index (GSHRI), complex I 
(NADH-ubiquinone oxidoreductase) and mitochondrial mtNOS activ-
ities, and attenuated the rise MDA and mitochondrial PC levels (Shehata 
et al., 2012). 

5.2. Stress-oxidant biomarkers implicated in aging mechanisms 

Several evidence support the involvement of these biomarkers 
influenced by the O3 administration in the mechanisms of aging 
(Table 1). We prevalently focused on those implicated in the Nrf2 sig-
nalling (in bold in Table 1). 

It has been reported that the levels of lipid peroxidation products, 
reactive carbonyl compounds, such as 4HNE, are increased in aging 
tissues (Csala et al., 2015), and this increase is positively correlated with 
age. Impaired protein function, manifested as an increase in PC, plays a 
crucial role in aging processes (Cabiscol et al., 2014). With increase of 
PC, the spontaneous carbonyl-amino crosslinking and accumulation 
were mostly irreparable changes associated with aging (Nowotny et al., 
2014). 

Several findings evidenced altered levels of AOPP in aging (Komo-
sinska-Vassev et al., 2012, Rusanova et al., 2018, Qing et al., 2012, Silva 
et al., 2015, Muller et al., 2015). A recent work investigated the anti-
oxidant enzymes (GSH-Px, CAT, SOD), nonenzymatic antioxidants (GR), 
redox status (total antioxidant capacity, TAC, total oxidant status, TOS, 
oxidative stress index, OSI), and oxidative damage products (AOPP, 
MDA) in a healthy sample divided according to age: 2-14 (children and 
adolescents), 25-45 (adults), and 65-85 (elderly people). They demon-
strated that salivary and blood antioxidant defense is most effective in 
adults. Contrarily, a progressive decrease in the efficiency of central 
antioxidant systems (↓GSH-Px, ↓SOD, ↓GSH, ↓TAC in erythrocytes and 
plasma vs. adults) was observed in the elderly. Both local and systemic 
antioxidant systems were less efficient in children and adolescents than 
in the group of middle-aged people, which indicates age-related 
immaturity of antioxidant mechanisms. Oxidative damage to proteins 
(↑AOPP) and lipids (↑MDA) was significantly higher in saliva and 

plasma of elderly people in comparison with adults and child-
ren/adolescents (Maciejczyk et al., 2019). Similarly, Cakatay et al. 
(Cakatay et al., 2008) found, in a young, middle-aged and elderly in-
dividuals sample, PCO and AOPP levels of the elderly and middle aged 
individuals higher compared with those of the young. 

Although not involved in Nrf2 signaling but influenced by O3 treat-
ment, the increased oxidative damage to mitochondrial DNA (mitDNA) 
with the OH8dG (8-hydroxydeoxyguanosine) formation, represents the 
most common hallmark of the aging brain, marker of oxidative DNA 
damage. The simultaneous increased oxidation of mtDNA and deficiency 
of DNA repair could enhance the lesion to mitochondrial genome, 
potentially causing neuronal damages (Mecocci et al., 2018). 

5.3. Stress-oxidant biomarkers implicated in NDs 

Several evidence support the implication of the pro-oxidation and 
antioxidant defence biomarkers influenced by O3 listed in Table 1 in the 
aetiopathogenetic mechanisms of NDs. Even for NDs, we prevalently 
focused on those implicated in the Nrf2 signalling (in bold in Table 1). 

5.3.1. Alzheimer’s Disease 
AD is characterized by progressive loss of cognitive and behavioral 

deterioration, which leads to the impairment of daily and routine ac-
tivities. It is one of the most prevalent NDs manifesting 45 million people 
worldwide. AD is characterized by the deposition of protein aggregates, 
extracellular amyloid plaques (Aβ), intracellular tau (τ) or neurofibril-
lary tangles, and loss of synaptic connections in specific regions of brain 
(Schipper, 2010, Mattson, 2004, Selkoe, 2001). The neuropathological 
diagnostic feature of AD is the accumulation of neurotoxic Aβ oligomer 
peptides, which, along with τ protein, mediate neurodegeneration, thus 
causing neuroinflammation, impairment in synaptic connection, 
cholinergic denervation, neurotransmitter imbalance, neuronal loss, and 
dendritic alterations. 

Different studies indicate the relationship between Aβ-induced 
oxidative imbalance and elevated levels of by-products of lipid peroxi-
dation (e.g., 4HNE, MDA), protein oxidation (e.g., carbonyl), and DNA/ 
RNA oxidation (e.g., OH8dG) (Wang et al., 2014c, Zhao and Zhao, 2013, 
Pratico, 2008, Mecocci et al., 2018). These alterations were observed 
also in peripheral lymphocytes and lymphocyte mitochondria (for re-
view Mecocci et al., 2018). Higher levels of PC, measured in mito-
chondria extracted from lymphocytes, have been observed in AD (for 
review Mecocci et al., 2018). 

Decreased levels of antioxidant enzymes like SOD, CAT, GSH, 
decreased ratio of GSH/GSSG (Glutatione disulfide), and/or impaired 
expressions or activities of GSH-related enzymes have been observed in 
blood or brain of AD patients (Singh et al., 2019, Liu et al., 2004, Kim 
et al., 2006, Oliveira, Laurindo, 2018). 

RNS such as NO are also found to have a deleterious effect on neu-
rons. Indeed, RNS elevation has been observed both in astrocytes as well 
as in neurons in an AD brain (for review Singh et al., 2019). An increase 
in the expression of neuronal nNOS or NOS-1, cytokine-inducible iNOS 
or NOS-2, and endothelial eNOS or NOS-3 isozymes has been observed 
in AD astrocytes. The direct association of iNOS and eNOS with Aβ ag-
gregates indicating towards beta amyloid assisted in the induction of 
NOS to produce NO, which in turn leads to the formation of 3-nitrotyr-
osine (NT) (Luth et al., 2002, Luth et al., 2001). 

Other findings reported increased levels of CK2 in the hippocampus 
and temporal cortex of AD patients (Rosenberger et al., 2016) and 
increased levels in AOPP (Can et al., 2013, Altunoglu et al., 2015), 
compared to non-demented controls. It has been observed that AD pa-
tients showed an increased oxidation of red blood cells GSH, which in-
dicates oxidative stress in peripheral cells, and an increased level of 
plasma thiobarbituric acid reactive substances (TBARS), which indicates 
a higher free radical oxidation of plasma unsaturated phospholipids 
(Vina et al., 2005). 

Moreover, HO-1 has been proposed as systemic marker in early 
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Fig. 3. Forest plot for odds ratio from meta-analysis of the endogenous Nrf2- antioxidant pathway before and after ozone (O3) treatment. 
CI, confidence interval; Chi2, χ2 test of goodness of fit; Tau2, estimate of the between-study variance in a random-effects meta-analysis. Superoxide dismutase (SOD), 
catalase (CAT), Glutathione peroxidase (GSH-Px), Glutathione (GSH), Glutathione S-transferase (GST), Glutathione reductase (GR). RI = rectal insufflations; MATH =
major autohemotherapy 
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sporadic AD (Schipper et al., 2000). Indeed, plasma HO-1 protein levels 
are significantly decreased in patients with probable sporadic AD 
(Schipper, 2007). The up-regulation of HO-1 in AD brain can be 
explained because of local oxidative stress. Instead, the mechanism 
responsible for the downregulation of HO-1 in the blood of AD patients 
remains unclear, even though the existence of a HO-1 suppressor that 
inhibits HO-1 mRNA levels in the lymphocytes in AD plasma has been 
proposed (Maes et al., 2006). However, the results about HO-1 plasma 
levels in patients with AD are controversial. A study found no changes in 
the serum level of HO-1 in a big cohort of AD patients, as compared with 
elderly control subjects, whereas increased levels were observed in PD 
patients, highlighting different mechanisms involved in the peripheral 
response to oxidative stress in the two diseases (Mateo et al., 2010). 
Moreover, another study reports that in plasma of probable AD patients, 
both HO-1 and biliverdin reductase (BVR) levels were increased because 
of the enhanced oxidative stress. The authors suggested that plasma BVR 
status, more than HO-1, can represent a potential biochemical marker 
for the prediction of AD at the earliest stages of disease (Di Domenico 
et al., 2012; for review Nitti et al., 2018). 

5.3.2. Parkinson’s disease (PD) 
PD is the second most prevalent neurodegenerative disorder, after 

AD, which is characterized by the progressive degeneration of the 
dopaminergic neurons located in the substantia nigra (SN) pars com-
pacta (Spillantini et al., 1998) which affects movement. The main 
neuropathological hallmark of PD is the presence of intracellular in-
clusions known as Lewy bodies (LBs) and neurites (LNs) (Forno, 1996); 
predominantly composed by misfolded and aggregated forms of the 
presynaptic protein α-synuclein (αSyn; a small protein with 140 amino 
acids abundant in presynaptic nerve terminals) (Spillantini et al., 1998). 
αSyn plays a role in synaptic transmission and dopamine levels adjust-
ment. αSyn primarily affect tyrosine hydroxylase phosphorylation and 
activity and the expression level of dopamine transporter on the cell 
membrane. 

Different evidence supported the involvement of the pro-oxidation 
and antioxidant defence biomarkers influenced by O3 listed in Table 1 
also with PD (focus on Nrf2). Altered levels of GSH and GSSG, decreased 
ratio of GSH/GSSG, and/or impaired expressions or activities of GSH- 
related enzymes have been detected in PD (Liu et al., 2004). TOS and 
OSI levels were found higher in the PD patients as compared to controls 
(Mota et al., 2019). 

RNS also play major role in nitrosative stress in PD. NO, produced by 
nNOS or iNOS was found in large quantities in cells, as well as in the 
extracellular space around dopaminergic neurons (Tieu et al., 2003). It 
has been observed that in PD brains, NO obstructs various enzymes 
including complex I and IV of the mitochondrial electron transport 
chain, hinders the function of proteins by forming S-nitrosothiols, me-
diates lipid peroxidation, resulting in elevated levels of ROS and brain 
deteriorating effect. In situ hybridization and immunohistochemical 
studies also established the role of NO in PD via postmortem brain tissue 
analysis, which indicates an elevated level of iNOS and nNOS in basal 
ganglia structures (Eve et al., 1998, Hunot et al., 1996). ONOO− has 
been shown to inhibit the presynaptic dopamine transporter, which 
mediates the uptake of dopamine from the synaptic cleft to stop dopa-
mine signalling, and to refill the dopamine vesicles. Its inactivation will 
induce a decrease in dopamine delivery (Picon-Pages et al., 2019). 

Oxidative damage in nucleic acids is likely to be a major risk factor 
for PD (Bosco et al., 2006, Puspita et al., 2017). Oxidative DNA lesions, 
such as 8-oxoguanine (8-oxoG), accumulate in nuclear and mitochon-
drial genomes during aging, and such accumulation can increase 
dramatically in these patients (Nakabeppu et al., 2007). 

5.3.3. Amyotrophic Lateral Sclerosis (ALS) 
Among the various neurodegenerative diseases, ALS is the most 

common type of motor neuron disease; it is sometimes called Lou Geh-
rig’s disease, after the famous baseball player who had this condition. 

ALS is characterized by the progressive degeneration of upper and lower 
motor neurons in the spinal cord, cortex, and brainstem (Kikuchi et al., 
2002). Although for most of the last 2 decades mutation of Cu–Zn SOD1 
was the only genetic aberration associated with the onset of familial 
ALS, recent studies have discovered additional abnormalities associated 
with the onset of sporadic and non-SOD1 familial ALS. These include a 
host of RNA/DNA-binding proteins such as the 43-kDa transactive 
response (TAR) DNA-binding protein (TDP-43) and the fused in sarco-
ma/translocated in liposarcoma (FUS/TLS). The most common genetic 
mutation is identified as expanded GGGGCC hexanucleotide repeat in 
the non-coding region of the C9Orf72 gene located on chromosome 9p21 
(Mendez, Sattler, 2015). 

Wang et al., (Wang et al., 2019c) reported increased blood levels of 
8-OHdG, MDA, and AOPP and decreased GSH and uric acid levels in the 
peripheral blood of ALS patients. These biomarkers have been found in 
sporadic ALS patient’s urine, cerebrospinal fluid (CSF), blood, and in-
dividual tissues. 

5.3.4. Huntington Disease (HD) 
HD named after George Huntington in 1872, is a fatal and autosomal 

dominant inherited progressive neurodegenerative disorder, resulting in 
neuronal degeneration in the striatum followed by deterioration of the 
cerebral cortex and thalamus. HD is caused by a mutation in the hun-
tingtin (HTT) gene. It is characterized by an abnormal extension in the 
cytosine–adenine–guanine (CAG) repeat in this gene, which in turn 
translates into an abnormally long repeat of polyglutathione in the 
mutant huntingtin protein. HD is mainly characterized by impaired 
motor and cognitive traits, personality change, and psychiatric illness 
(Vonsattel, DiFiglia, 1998). 

Lipid peroxidation, DNA damage, and specifically protein carbon-
ylation were found to be more pronounced in HD (Tunez et al., 2011). 
Dysregulation in cysteine metabolism was observed in HD (Paul et al., 
2018). Cysteine plays vital roles in redox homeostasis, being a compo-
nent of the major antioxidant GSH and a potent antioxidant by itself. In 
HD patients, decreased GSH levels and increased lipid peroxidation were 
observed as compared with controls (Oliveira, Laurindo, 2018). In 
postmortem brain specimens of HD, a twofold increase of OH8dG in 
mtDNA was found in the parietal and slightly less in the frontal cortex 
compared to controls (Polidori et al., 1999). 

6. Molecular mechanisms involving ozone (O3), Nrf2 and 
vitagene network and their biological relevance in 
neuroprotection 

At the core of adaptive responses at the cell and origin of biological 
organization is the concept of hormesis (Calabrese et al., 2010). 
Hormesis describes a process that results in ameliorating and improve 
cellular stress resistance, survival, and longevity in response to 
sub-lethal levels of stress (Mattson, 2008). Generally, a favorable bio-
logical response to low exposure to any stressor is found within the 
hormetic zone, whereas cell damage occurs at higher doses. The hor-
metic dose response results from either a direct stimulation or through 
an overcompensation stimulatory response following disruption in ho-
meostasis (Calabrese and Baldwin, 2000). This theory is, to date a 
frontier area of neurobiological research, focal to understand and 
develop new/complementary therapeutic approaches to NDs. In this 
context, Nrf2 is considered as a hormetic-like pathway (Calabrese et al., 
2010). 

It has widely been reported that the activation of Nrf2 by several 
different mechanisms (calorie restriction, physical exercise, poly-
phenols, mushrooms) can be a way to improve life health, due to its 
transcriptionally modulation on the vitagene network. Calabrese et al. 
(Calabrese et al., 2010), performed an exhaustive review on this topic, 
and they described in detail each single element of the vitagene 
pathway. Members of the Hsp70s are, in their function as molecular 
chaperones, involved in folding of newly synthesized proteins and 
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refolding of damaged or misfolded proteins, as well as in assembly and 
disassembly of protein complexes. Trx, is a major redox control system, 
consisting of a 12 kDa redox active protein Trx, and a homodimeric 
seleno-protein called TrxR1. TrxR1 is a flavoprotein that catalyzes the 
NADPH-dependent reduction of oxidized thioredoxin protein. It is usu-
ally located in the cytosol, but it translocates into the nucleus in response 
to various stimuli associated with oxidative stress, thereby playing a 
central role in protecting against oxidative stress. Sirtuins are histone 
deacetylases which, in the presence of NAD+ as a cofactor, catalyze the 
deacetylation reaction of histone substrates and transcriptional regula-
tors. Sirtuins regulate different biological processes, such as apoptosis, 
cell differentiation, energy transduction, and glucose homeostasis. 

Recent reviews support wide evidence on how different nutraceut-
icals/antioxidants can contrast aging and combat many associated pa-
thologies, including NDs (Leri et al., 2020, Calabrese, 2020). Natural 
polyphenols (i.e. curcumin, resveratrol, flavonols present in Ginkgo 
biloba extracts, polyphenols present abundantly in the leaves and in the 
ripening fruits of the olive tree, Olea europaea), as well as mushrooms 
(Hericium Erinaceus, Coriolus versicolor) can significantly modulate Nrf2 
and Nrf2-dependent vitagenes expression, showing neuroprotective ac-
tion. This can potentially resolve pathologies such as AD, PD and also 
Meniere’s Disease, another degenerative pathology (Amara et al., 2020, 
Trovato et al., 2016a, Trovato et al., 2016b, Trovato Salinaro et al., 
2018, Scuto et al., 2019). 

In line with these findings, several studies demonstrated that also O3 
can modulate the vitagene network expression. Pharmacologically, it 
acts in a hormetic fashion (Bocci et al., 2011, Calabrese, 2013), ac-
cording an inverted V shape curve. We researched studies for 
meta-analyses regarding Nrf2, HO-1, Hsp70, TrxR1 and sirtuins. 
Whereas no studies were performed between sirtuins, TrxR1 and O3, the 
results indicated that O3 can statistically increase the expression/protein 
levels of Nrf2, HO-1 and Hsp70 molecules (Fig. 4, Random model, Z =
4.72 p < 0.00001 OR = 1.80 95%CI:1.05-2.55, even after Bonferroni 
correction 0.05/3 = 0.016). Although our work has been excluded 
because we performed transcriptomic analyses (Scassellati et al., 2017), 
we confirmed the increase of the gene enconding HO-1 (HMOX-1), after 
different concentrations of O3. The high heterogeneity in effect size 
among the studies (p < 0.0001 I2 = 66%) is essentially determined by 
two factors: different sources of samples (human, cell and animal 
models) and different methodology (biochemical and western blot an-
alyses, ultrastructural and immunocytochemistry evaluations) (supple-
mentary material Table 1S). Where it was possible, we performed the 
analysis as homogeneously as possible: in this case, O3 concentration 
(20μg/ml) and exposition time (max 24 hr) were constant in all exper-
imental conditions. 

Interestingly, a study reported the benefit effect of O3 on Menière’s 
disease (Pawlak-Osinska et al., 2004). Moreover, as reported for poly-
phenols and mushrooms (Hsiao et al., 2016, Ferreiro et al., 2018, Oh 
et al., 2014, Pan et al., 2018, Hasanzadeh et al., 2020, Wang et al., 
2019b), O3 has been found to be involved in β-catenin system (Emon 
et al., 2017) as well as in NLRP3 (nitrogen permease regulator-like 3) 
inflammasome (Yu et al., 2017, Wang et al., 2018c). 

All these evidence support that, as polyphenols and mushrooms, O3 
acts in the same direction. Induction of vitagenes after their supple-
mentation/adminstration determines a maintained response to coun-
teract intracellular pro-oxidant status, thus providing neuroprotection. 

7. Effect of Ozone Oxidative Preconditioning on Oxidative Stress 
Injury 

Preconditioning is a process whereby an initial low dose of a stressor 
agent upregulates adaptive mechanisms that enhance resilience against 
subsequent and acute stressor agents within a time-sensitive window of 
~ 10–14 days (Calabrese, 2016). Different studies demonstrated that the 
supplementation with Coriolus versicolor (Ferreiro et al., 2018, Scuto 
et al., 2019, Trovato Salinaro et al., 2018, Trovato et al., 2016a), and 

Hericium Herinaceus (Trovato Salinaro et al., 2018, Trovato et al., 2016b) 
biomass and polyphenols (Mao et al., 2019) can maintain the response to 
neutralize intracellular pro-oxidant/neuroinflammatory status, pre-
venting different neurological conditions. 

Same behaviour was also widely reported for O3. The term “ozone 
oxidative preconditioning” (OzoneOP) was coined when repeated 
administration of O3 at nontoxic doses facilitate adaptation to oxidative 
stress. This occurs through mild immune system activation, enhanced 
release of growth factors and/or activation of metabolic pathways that 
help maintain redox balance (increased SOD, GSH activities, decreased 
peroxidation). 

The first studies on OzoneOP were conducted by Barber et al., 1999 
(Barber et al., 1999) and Leon OS et al., 1998 (Leon et al., 1998). From 
1998-1999 to date, a plethora of investigations on this topic was con-
ducted. In Table 2, we reported 65 findings, of which 55 on OzoneOP, 
whereas 10 are the studies conducted on postconditioning phenomenon. 

We observed that OzoneOP exerts a protective effect on ischemia- 
reperfusion injury (IRI) in rat models of cochlear, hepatic, intestinal, 
renal, cardiac, lung and skeletal ischemia through an oxidative pre-
conditioning mechanism that prevents the increase of the endogenous 
pro-oxidant and stimulates antioxidant mechanisms (Table 2). Some 
authors also developed an in vitro Hypoxia/Reoxygenation (H/R) model 
to simulate OzoneOP, using normal rat kidney epithelial (NRK-52E) 
cells. This to eliminate confounding variables linked to animal models 
(Wang et al., 2014a, Wang et al., 2018a). Interestingly, the results 
confirmed those obtained in in vivo animal model (Table 2). 

OzoneOP prevents also other different kind of injury: lipopolysac-
charide (LPS) injection, carbon tetrachloride, partial hepatectomy, total 
body irradiation, methotrexate, intraperitoneal injection of rat fecal 
material, sepsis, kidney and cardiac transplantation, contrast-induced 
nephropathy, induction of diabetes, cisplatin-induced nephrotoxicity, 
contrast-induced nephropathy agent, H2O2, doxorubicin, ototoxicity, 
noise exposure, hypothermia, lipofundin (Table 2). 

Different methodological systems have been implemented in these 
studies. The different authors analysed differences in mRNA gene 
expression levels as well as protein levels in Western Blot and 
biochemical analyses. All authors performed morphological, histopath-
ological, immunofluorescence, and immunohistochemistry evaluations, 
in parallel and in concordance with molecular investigations. Interest-
ingly, in some cases, the effects observed were strongly dose and time- 
dependent (Table 2). 

In some cases (10 in total), the studies have been performed in 
postconditioning, obtaining the same outcomes. León Fernández et al. 
(Leon Fernandez et al., 2012) investigated the systemic redox status of 
patients with low back pain and neck pain, and if O3 oxidative post-
conditioning modified the pathological oxidative stress and protected 
against oxidative protein damage. In 33 patients with diagnosis of disc 
hernia (DH), 100% showed a severe oxidative stress. Major changes in 
SOD, total hydroperoxides, AOPP, fructolysine, and MAD were 
observed. After O3 postconditioning, there was a re-establishment of 
patients’ cellular redox balance as well as a decrease in pain in both DH. 
This demonstrated that O2-O3 therapy protected against oxidation of 
proteins and reduced the pain. 

8. Conclusions 

According to Cuadrado et al. (2018), Cuadrado et al. (2019), systems 
medicine identifies a cluster of chronic disease pathophenotypes 
including NDs in which Nrf2 plays a fundamental role. Similarly, Nfr2 is 
strongly implicated in aging processes (Zhang et al., 2015, Schmidlin 
et al., 2019, Silva-Palacios et al., 2018). These condition/diseases share 
common mechanisms and the results represent a first attempt to struc-
ture Nrf2 as a common therapeutic and systems medicine approach. 

We here have presented extensively research and strength on the 
antioxidant activities of O3 correlated with the interaction with Nrf2 
(Galie et al., 2018, Siniscalco et al., 2018, Re et al., 2014, Vaillant et al., 
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2013), along with anti-apoptotic functions by acting on mitochondrial 
Bax, caspases, p53 and HIFα molecules (Yong et al., 2017, Guclu et al., 
2016), pro-autophagy and bioenergetic activities on Kreb’s cycle. This 
paper provides a road map for mechanism-based systems medicine 
where O3-Nfr2-vitagene network plays a crucial role in the modulation 
of the cellular redox balance, in the reduction of the formation of 
ROS/RNS, in the change of apoptotic and autophagy mechanisms 
(Vikram et al., 2017). This underlines the evidence to become potential 
new therapeutic targets for NDs, and at the same time to reduce the 
aging physiological mechanisms and cognitive decline, potential risk 
factors to develop more severe neurodegeneration damage. 

Challenges regarding treatments efficacy and costs still persist for 
NDs. Thus, we suggest that O2-O3 therapy could represent a useful, safe, 
no-invasive, no-pharmacological, economical, effective treatment for 
these neurodegenerative conditions. In the medical setting, this therapy 
employs a gas mixture of O2/O3, obtained from the modification of 
medical-grade O2 using certificated O3 generator device (Bocci, V., 
2011). Based on the basic mechanisms of action of O3 in blood, the 
therapeutic range of O3 has been precisely calculated and found to be 
10–80 μg/ml of O3 in blood (Schwartz-Tapia et al., 2015). O3 medical 
preparations are classified into three types: ozonized water, ozonized oil 
and ozonized gas, whereas different and main routes of application with 
relative concentrations of O3 are widely described in Schwart-Tapia 
et al., 2015 (Schwartz-Tapia et al., 2015). 

The side effects are minimal; the World Federation of Ozone therapy 
(WFOT) estimates the incidence of complications at 0.0007%. More-
over, the treatment is not only perfectly tolerated but most of patients 
have reported a feeling of wellness and euphoria throughout the cycle. 
This fact explains why the compliance of the patients remains excellent 
throughout the years. 

The mechanisms of the positive effects of O3 are attributed not only 
to up-regulation of cellular antioxidant enzyme activity, but also to the 
activation of the immune and anti-inflammatory systems, modulation of 
NPRL3 inflammasome, action on proteasome, enhancement in the 
release of growth factors from platelets, improvement in blood 

circulation and O2 delivery to damaged tissues, and enhancement of 
general metabolism, along with being a potent bactericide, fungicide 
and virucidal with potential effect on gut microbiota (for review Scas-
sellati et al., 2020). Consequently, these combinatorial effects could 
impact on cognitive and neurodegenerative domains, directly or indi-
rectly through the mediation of gut microbiota (Cattaneo et al., 2017). 
Nrf2-ARE and vitagene network, but also NF-κB, NFAT (nuclear factor 
activated T-cells), AP-1 (Activated Protein-1), HIFα are the principal 
signalling pathways on which O3 exercises its effects (for review Scas-
sellati et al., 2020). These effects could be sharable with those involved 
in NDs, where high inflammation and oxidant state, mitochondria dys-
functions, metabolic alterations, and slowdown in regenerative pro-
cesses and immune system characterize these disorders. 

As reported in Smith et al., 2017, to date systems are available and 
proposed to have a more precise measurement of the redox state of a 
patient. One system proposes simultaneously measuring different bio-
logical markers in the blood such as GSH, GSH-Px, GST, SOD, CAT, 
conjugated dienes, total hydroperoxides, and TBARS. Using an algo-
rithm, information can be gathered about the total antioxidant activity, 
total pro-oxidant activity, redox index, and grade of oxidative stress. 
Thus, systems like this can provide insights to the correct dosage and 
response to O3 therapy based on oxidative stress levels seen in the 
patient. 

With the awareness that further studies are needed, this review re-
ports substantial scientific evidence for building a rationale of using the 
O2-O3 therapy to delay aging processes and neurodegeneration, 
exploiting well documented omni various functions of O3. This therapy 
could represent a convenient, inexpensive monodomain intervention, 
working in absence of side effects that will permit to modulate the 
oxidant, but also immune, inflammatory, metabolic, microbiota and 
regenerative processes impaired in NDs. 

There is a recent consistent upsurge of interest in complementary 
medicine, especially dietary supplements and foods functional in 
delaying the onset of age-associated NDs. O3 along with other antioxi-
dants (polyphenols, mushrooms) can open new neuroprotective 

Fig. 4. Forest plot for odds ratio from meta-analysis of the endogenous Nrf2- vitagene pathway before and after ozone (O3) treatment. 
CI, confidence interval; Chi2, χ2 test of goodness of fit; Tau2, estimate of the between-study variance in a random-effects meta-analysis. Nuclear factor Nrf2, heme- 
oxigenase (HO-1), heat shock protein (HSP) 
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Table 2 
Preconditioning/postconditioning studies of O3 on endogenous pro-antioxidant mechanisms in vivo on animal models and in vitro on cells.  

Tissues Dosages Results References 

KIDNEY 

Preconditioning: 0.7 mg/kg, intraperitoneally, 15 applications 
(once daily), before methotrexate (Mtx) (6 mg/kg). 

Reduction: malondialdehyde (MDA). Increase: superoxide 
dismutase (SOD), glutathione peroxidase GSH-P × . 
Histologically: ILEUM: less inflammatory cell infiltration and 
edema, reduction in vacuolated cells in the epithelium; LIVER/ 
KIDNEY: no significant change, due probably to the cumulative 
prolonged effect of Mtx on these tissues. 

(Kesik et al., 2009) 

Postconditioning : 
Sprague Dawley rats: 1, 2 mg/kg, rectal insufflations, 15 
applications, once a day, ischemia/reperfusion. 
Renal tubular epithelial cell line, NRK-52E: 20, 30, 40 μg/mL in 
complete medium, hypoxia–reoxygenation. 

IN VIVO: Reduction dose-dependent manner: blood urea nitrogen 
(BUN), creatinine (Cr), malondialdehyde (MDA), bcl-2-associated X 
(BAX) and poly (ADP-ribose) polymerase 1 (PARP-1) expression, 
MAPK signaling pathway. Increase dose-dependent manner: 
superoxide dismutase (SOD). 
Histologically: ozone protected the tubular epithelium from 
swelling and from loss of the brush border. 
IN VITRO: Reduction dose-dependent manner: MAPK pathways, 
CREB, c-fos, bcl-2-associated X (BAX) and poly (ADP-ribose) 
polymerase 1 (PARP-1) expression, apoptosis, malondialdehyde 
(MDA), phosphorylation of p38, ERK1/2, and JNK. Increase dose- 
dependent manner: superoxide dismutase (SOD). 

(Wang et al., 2018a) 

Postconditioning: 
Sprague Dawley rats: 2 mg/kg, rectal insufflations, 15 
applications, once a day, after ischemia/reperfusion. 
Renal tubular epithelial cell line, NRK-52E: 20, 30, 40 μg/mL in 
complete medium, after hypoxia–reoxygenation. 

IN VIVO: Reduction: blood urea nitrogen (BUN), creatinine (Cr), 
malondialdehyde (MDA), caspase 1, caspase 11, interleukin 1β (Il- 
1β), Interleukin-18 (IL18) expression/protein. Increase: superoxide 
dismutase (SOD). 
IN VITRO: Reduction: malondialdehyde (MDA), caspase 1, caspase 
11, interleukin 1β (Il-1β), Interleukin-18 (IL-18) expression/protein. 
Increase: superoxide dismutase (SOD), cell viability. 
Histologic Examinations, Immunofluorescence Staining: prevented 
renal damage, reduction in Jablonski grading scale scores, 
decreased caspase 1. 

(Wang et al., 2019a) 

Postconditioning: 0.5 mg/kg, rectal insufflations, after ischemia/ 
reperfusion. A control with Oxigen was used. 

Reduction: serum creatinine (Cr), blood urea nitrogen (BUN), 
myeloperoxidase (MPO), malondialdehyde (MDA), a-smooth 
muscle actin (α-SMA), transforming growth factor β1 (TGF-β1), 
phospho-Smad 2 protein. Increase: superoxide dismutase (SOD). 
Histology: Jablonski scores of histologic appearance in acute 
tubular necrosis, renal areas of tubulointerstitial fibrosis showed 
minimal phenomenon. 
Immunochemistry: Myofibroblasts (α-SMA positive) were faintly 
detected in ozone-treated samples. 

(Jiang et al., 2020) 

Preconditioning: 1 mg/kg, rectal insufflations, 15 applications, 
once a day, before ischemia/reperfusion. 

Reduction: α-smooth muscle actin (α-SMA), transforming growth 
factor-β1 (TGF-β1) expression/protein. Increase: Smad7 expression/ 
protein. 
Morphological/immunohistochemistry: increase in collagen 
staining, reduction in α-SMA expression. 

(Wang et al., 2014b) 

Postconditioning: 0.5 mg/kg, daily for the 10 days’ reperfusion, 
after ischaemia–reperfusion. A control was performed with Oxygen. 

Reduction: serum creatinine (Cr), blood urea nitrogen (BUN), 
thiobarbituric acid reactive substances (TBARS). Increase: 
fructosamine, phospholipase A2, superoxide dismutase (SOD). 
Morphology: minimal alterations. 

(Calunga et al., 
2009) 

Preconditioning: 1 mg/kg, rectal insufflations, 15 applications, 
once a day, before the kidney transplantation. 

Reduction: serum blood urea nitrogen (BUN), creatinine (Cr), 
malondialdehyde (MDA), renal allograft cell apoptosis index. 
Increase: superoxide dismutase (SOD), glutathione (GSH), catalase 
(CAT), nuclear factor erythroid 2-related factor 2 (Nrf-2), heme 
oxygenase 1 (HO-1). 
Morphological/immunohistochemistry: lower levels of damage, less 
severe renal allograft. 

(Qiu et al., 2017) 

Preconditioning: 0.7 mg/kg/d, intraperitoneally, 5 days, before the 
induction of contrast-induced nephropathy. A control group was 
with Oxygen. 

Reduction: serum blood urea nitrogen (BUN), creatinine (Cr), 
serum/renal malondialdehyde (MDA), total oxidant status (TOS). 
Increase: serum/renal nitric acid (NO), total antioxidant status 
(TAS). 
Histopathologic evaluation: reduction in degeneration of tubular 
epithelium, dilatation of Bowman capsule, necrosis in tubular 
epithelium, vascular congestion. 

(Kurtoglu et al., 
2015) 

Preconditioning: 1 mg/kg, rectal insufflations, 15 applications, 
once a day, before ischemia/reperfusion and/or ischemic 
preconditioning. 

Reduction: malondialdehyde (MDA), urea nitrogen (BUN), 
creatinine (Cr), Jablonski grading scale scores. Increase: serum 
nitric acid (NO), NO synthase (endothelial, eNOS and inducible, 
iNOS) expression/protein, glutathione (GSH), superoxide dismutase 
(SOD), glutathione peroxidase (GSH-Px). 
Histological Examination/Immunohistochemistry: improved renal 
dysfunction, histological damage, renal oxidative stress, increase 
presence of endothelial, eNOS and inducible, iNOS. 

(Chen et al., 2008c) 

Preconditioning: IN VITRO Renal tubular epithelial cell line, 
NRK-52E, 20, 30, 40 μg/mL in complete medium, before hypoxia/ 
reoxygenation. 

Reduction dose-dependent manner: 40 μg/mL apoptosis rate, 
malondialdehyde (MDA), Lactate dehydrogenase (LDH), bcl-2- 
associated X (BAX), Bcl2, poly (ADP-ribose) polymerase 1 (PARP-1) 
expression. Increase dose-dependent manner: superoxide dismutase 
(SOD). 
Immunocytochemistry: decrease in cleaved caspase3-positive 

(Wang et al., 2014a) 

(continued on next page) 
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Table 2 (continued ) 

Tissues Dosages Results References 

Preconditioning: 1 mg/kg, rectal insufflations, 15 applications, 
once a day, before ischemia/reperfusion. 

Reduction: serum blood urea nitrogen (BUN), creatinine (Cr), 
malondialdehyde (MDA), myeloperoxidase (MPO), Tumor necrosis 
factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), 
intercellular adhesion molecule (ICAM-1), monocyte 
chemoattractant protein 1 (MCP-1), Toll-Like Receptor (TLR4), 
nuclear factor (NF-κB) expression/protein, caspase-3, bcl-2- 
associated X (BAX), Bcl2. 
Morphology: decreased score in Jablonski scale histology grading. 

(Chen et al., 2008a) 

Preconditioning: 1 mg/kg, rectal insufflations, 15 applications, 
once a day, before ischemia/reperfusion. 

Reduction: malondialdehyde (MDA), serum blood urea nitrogen 
(BUN), creatinine (Cr), tumor necrosis factor-α (TNF-α), interleukin- 
1β (IL-1β), interleukin-6 (IL-6), intercellular adhesion molecule 
(ICAM-1), monocyte chemoattractant protein 1 (MCP-1), Toll-Like 
Receptor (TLR4) and nuclear factor (NF-κB) expression/protein 
/immunoistochemical, caspase-3, bcl-2-associated X (BAX), Bcl2. 
Morphological/Immunoistochemical features: relieved tubular 
necrosis, medullary haemorrhage, congestion and development of 
proteinaceous casts, reduction in Jablonski scores. 

(Xing et al., 2015) 

Preconditioning: 1 mg/kg, rectal insufflations, 15 treatments, once 
a day, before ischemia/reperfusion. As control was used also 
Oxygen. 

Reduction: serum blood urea nitrogen (BUN), creatinine (Cr), 
Jablonski grading scale scores, endothelin-1. Increase: serum nitric 
oxide (NO), NO synthase (endothelial, eNOS, inducible, iNOS) 
expression/protein, superoxide dismutase (SOD), glutathione 
(GSH), glutathione peroxidase (GSH-Px). 
Morphology: preservation of tissue histology. 

(Chen et al., 2008b) 

Postconditioning: 0.5 mg/kg, rectal insufflations, 10 applications, 
once a day, after ischemia/reperfusion. As control was used also 
Oxygen. 

Histopathological/Morphology: no significant differences for 
filtration fraction and proteinuria, improvement in glomerular 
filtrate rate, renal plasma flow, creatinine, less overall histological 
damage. 

(Fernandez Iglesias 
et al., 2011) 

Preconditioning: 1.1 mg/kg, intraperitoneally, 5 days, before 
induction of diabetes. Other groups were diabetic rats/insulin. 

Reduction: Systolic blood pressure (SBP), Diastolic blood pressure 
(DBP), Glycosylated hemoglobin (HbA1c), serum blood urea 
nitrogen (BUN), creatinine (Cr), aldose reductase (AR), 
malondialdehyde (MDA). Increase: superoxide dismutase (SOD), 
glutathione peroxidase (GSH-Px), catalase (CAT). 

(Morsy et al., 2010) 

Preconditioning: 25 mcg/ml, intraperitoneally, 15 days, before 
methotrexate (20 mg/kg). 

Reduction: malondialdehyde (MAD), Myeloperoxidase (MPO), 
Tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β). Increase: 
glutathione (GSH). 
Histolopatologically: reduction in degeneration of glomerular 
structures, glomerular congestion, dilatation of Bowman’s space, 
degeneration of proximal tubuli, degeneration of distal tubuli, 
tubular basal membrane wrinkling, vascular congestion, interstitial 
edema, inflammation and cell infiltration. 

(Aslaner et al., 2015) 

Preconditioning: 0.36, 0.72, 1.1, 1.8, 2.5 mg/kg, rectal 
insufflations, 15 applications, before cisplatin-induced 
nephrotoxicity (6 mg/kg). 

Reduction dose-dependent manner: creatinine (Cr) (0.72, 1.1 mg/ 
kg), thiobarbituric acid-reactive substances (TBARS). Increase dose 
-dependent manner: glutathione (GSH), superoxide dismutase 
(SOD), glutathione peroxidase (GSH-Px) (0.72, 1.1 mg/kg), catalase 
(CAT). 
Histopathological changes: at doses of 1.8 and 2.5 mg/kg, 
histopathological significant improved changes in renal tissue 

(Borrego et al., 
2004) 

Preconditioning: 1 mg/kg, intraperitoneally, 6 hours before and 6 
hours after contrast-induced nephropathy agent (10 ml/kg), 5 days. 

Increase: total antioxidant capacity (TAC), lipocalin (NGAL). No 
alteration in creatinine. 
Histopathological alterations: improving in Renal tubular injury, 
hemorrhage, cast formation. 

(Ozturk et al., 2018) 

Preconditioning: Major Ozonated Autohemotherapy in 5 m blood 
rabbit, before ischemia/reperfusion. 

Reduction: interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), 
white blood cells, neutrophil to lymphocyte ratio (NLR), ischemia- 
modified albumin (IMA), total oxidant status (TOS), oxidative stress 
index (OSI). Increase: total antioxidant status (TAS). 
Histopathological changes: reduced the tubular brush border loss 
(TBBL), tubular cast (TC), tubular necrosis (TN), intertubular 
hemorrhage congestion (IHC), dilatation of bowman space (DBS). 

(Sancak et al., 2016) 

Preconditioning: 0.5 mg/kg, rectal insufflations, 15 treatments, 
before ischaemia/reperfusion. Oxygen was used as further control. 

Reduction: Phospholipase A, Fructosamine. Increase: p-amino- 
hippurate (PAH), inulin, superoxide dismutase (SOD). 
Morphology: increased renal plasma flow (RPF), glomerular 
filtration rate (GFR). 

(Barber et al., 1999) 

Preconditioning: 0.8, 2.4, 4 mg/kg, intraperitoneally, daily for 5 
days, with/without sepsis. A control was performed with Oxygen. 

Reduction: serum alanine amino transferase (ALT), aspartate amino 
transferase (AST), creatinine (CRE), thiobarbituric acid reactive 
substances (TBARS), myeloperoxidase (MPO). Increase: superoxide 
dismutase (SOD), glutathione peroxidase (GSH-Px). 

(Rodriguez et al., 
2009) 

Preconditioning: 1 mg/kg, transrectal insufflations, once a day, 15 
treatments, before the kidney transplant procedure. 

Reduction: blood urea nitrogen (BUN), serum creatinine (Cr) 
(slightly), Jablonski grade, serum interleukin-6 (IL-6), IL-18, 
cyclooxygenase-2 (Cox-2), Malonaldehyde (MDA), nuclear factor 
NF-κBp65 and rabbit polyclonal anti-rat antibody (HMGB1) 
expression/protein. Increase: Superoxide Dismutase (SOD), 
Glutathione peroxidase (GSH-Px). 
Morphology: alleviated the morphological damages, attenuated the 
injury of brush border of proximal renal tubular, restrained the 
expression level of NF- κBp65 in renal tissue, suppressed the 
expression of HMGB1 in renal tissue. 

(Wang et al., 2018b) 

(continued on next page) 
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Table 2 (continued ) 

Tissues Dosages Results References 

150 mg/kg, intraperitoneally, single dose for 10 days, at the same 
time Escherichia coli toxin (LPS) (20 mg/kg). 

Reduction: lactate dehydrogenase (LDH) (Liver, Kidney, Lungs, 
Heart). Increase: Succinate Dehydrogenase (SDH) (Lungs, Heart), 
adenosine triphosphatase (ATPase) (no Kidney), acid phosphatase 
(AcPase) (Liver, Kidney, Lungs, Heart), β-Glucuronidase (Liver, 
Kidney, Lungs). 
Histochemically detected activity of succinate dehydrogenase 
(SDH): extinguished enzymatic activity in central parts of the lobule 
and paralleled by narrowing of zone I (Liver). 
Histochemically detected activity of lactate dehydrogenase (LDH): 
increased activity (hepatocytes, Kupffer cells, Liver). 
Histochemically detected activity of adenosine triphosphatase 
(ATPase): decrease intensity of the reaction for ATPase (Liver). 
Histochemically detected activity of acid phosphatase (AcPase): 
lower decrease in activity (Liver). 
Histochemically detectable activity of succinate dehydrogenase 
(SDH): the reaction in tubular epithelial cells was slightly more 
pronounced (Kidney). 
Histochemically detected activity of lactic dehydrogenase (LDH): 
less pronounced stimulation of enzyme in principal tubules and 
other portions of nephrons (Kidney). 
Histochemically detected activity of adenosine triphosphatase 
(ATPase): decreased intensity of the reaction in renal glomeruli and 
in walls of blood vessels, particularly those of low caliper (Kidney). 
Histochemically detected activity of acid phosphatase (AcPase): 
decreased intensity of the reaction pertained in principal tubuli and 
collecting duts (Kidney). 
Histochemically detected activity of succinate dehydrogenase 
(SDH): no more pronounced alterations (Lungs). 
Histochemically detected activity of lactate dehydrogenase (LDH): 
stimulation was less pronounced (Lungs). 
Histochemically detected activity of adenosine triphosphatase 
(ATPase): no changing (Lungs). 
Histochemically detected activity of acid phosphatase (AcPase): 
decreased activity (Lungs). 

(Madej et al., 2007) 

LIVER 

Preconditioning: 0.2, 0.4, 1.2 mg/kg intraperitoneally, once daily, 
for 5 days, before lipopolysaccharide (LPS) injection (30 mg/kg). 
Dexamethasone (30 mg/kg) used as a reference drug. 

Reduction dose-dependent manner: thiobarbituric acid reactive 
substances (TBARS). Increase dose-dependent manner: glutathione 
peroxidase (GPx). 

(Rodriguez et al., 
2011) 

Preconditioning: 0.2, 0.4, 1.2 mg/kg intraperitoneally, once daily, 
for 5 days, before lipopolysaccharide (LPS) injection (0.1 mg/kg). 
Dexamethasone (30 mg/kg) used as a reference drug. 

Reduction dose-dependent manner: serum Tumor Necrosis Factor 
(TNF)-alpha, thiobarbituric acid reactive substances (TBARS). 
Increase dose-dependent manner: glutathion-S transferase (GST), 
glutathione peroxidase (GSH-Px). 

(Zamora et al., 
2005) 

Preconditioning: 0.2, 0.4, 1.2 mg/kg, intraperitoneally, 0.2, 0.4 
mg/kg, rectal application, once daily for five days, before 
lipopolysaccharide (LPS) injection (0.1 mg/kg). 

Reduction dose-dependent manner: serum Tumor Necrosis Factor 
(TNF)-alpha. 

(Zamora et al., 
2004) 

Preconditioning: 50 ug/ml (4.4–5.0 ml), 15 treatments, one per day, 
before carbon tetrachloride (CCl4). 
Ozone control groups were: 1. A control was with Oxygen; 2. 
another control was ozone without CCl4. 

Reduction: Aspartic alanine transaminase (AST), phospholipase A, 
hepatic lipid peroxidation (TBARS, thiobarbituric acid-reactive 
substances). Increase: cholinesterase (CHEase), superoxide 
dismutases (SODs), Catalase (CAT), Calcium-dependent (Ca- 
ATPase), gluthatione (GSH), glucose-6-phosphate dehydrogenase 
(G6PD). 
Morpho-metric evaluation of the hepatic damage: reduction of the 
damage area. 

(Leon et al., 1998) 

Preconditioning: 1 mg/kg, rectal insufflations, 15 treatments, one 
per day, before ischaemia–reperfusion. 

Reduction: Aspartic alanine transaminase (AST), serum alanine 
aminotransferase (ALT), malondialdehyde (MDA) + 4-hydroxyal-
kenals, nitrite/nitrate (NO2-/NO3-). Increase: superoxide dismutase 
(SOD), total hydroperoxide (TH), glutathione (GSH), Ratio GSH/ 
GSSG. 

(Ajamieh et al., 
2004) 

Preconditioning; 0.7 mg/kg, intraperitoneally, daily five times, 
before 70% partial hepatectomy. 

Reduction: serum alanine aminotransferase (ALT), aspartate 
aminotransferase (AST), tumor necrosis factor alpha (TNF-α). No 
alterations: interleukin-6 (IL-6). 
Histopathological examination: improve in liver weight, mitotic 
index, proliferating cell nuclear antigen (PCNA) labeling index. 

(Gultekin et al., 
2013b) 

Preconditioning: 0.7 mg/kg, intraperitoneally, daily five times, 
before total body irradiation with a single dose of 6 Gy. 

Reduction time-dependent manner: serum alanine aminotransferase 
(ALT), aspartate aminotransferase (AST), tumor necrosis factor 
alpha (TNF-α), malondialdehyde (MDA). Increase time-dependent 
manner: superoxide dismutase (SOD). 
Histopathological examination: reduction in hepatocellular 
degeneration, inflammation, congestion and dilatation in both 
sinusoids and central veins; reduced inflammatory cell infiltrate in 
the lamina propria; regular villous structure, abundant goblet cells 
in the epithelium; reduced inflammatory cell infiltrate in the lamina 
propria. 

(Gultekin et al., 
2013a) 

Preconditioning: 0.5 mg/kg, intraperitoneally, daily five times, 
before lipopolysaccharide (LPS) injection (20 mg/kg). Ketamine (5 
mg/kg) used as a reference drug. 

Reduction: Nuclear factor κB (NF-κB) staining. 
Morphology/Immunohistochemistry parameters: intact hepatic 
architecture, normal liver cell membrane integrity, little 
inflammatory cell infiltration (low NF-kB-positive staining). 

(Sun, Pei, 2012) 

(continued on next page) 

C. Scassellati et al.                                                                                                                                                                                                                              



Ageing Research Reviews 63 (2020) 101138

15

Table 2 (continued ) 

Tissues Dosages Results References 

Preconditioning: 1 mg/kg, rectal insufflations, 15 treatments, one 
per day, before ischemia/reperfusion. Agonist (2-chloro N6 cyclo- 
pentyladenosine, CCPA), Antagonist (8-cyclopentyl-1,3- 
dipropylxanthine, DPCPX) of A1 subtype receptor. 

Reduction: serum alanine aminotransferase (ALT), aspartate 
aminotransferase (AST), nitric oxide (NO) (nitrite/nitrate (NO-2)/ 
NO-3), adenosine deaminase (ADA), malondialdehyde (MAD), 4- 
hydroxyalkenals, attenuated GSSG increase, NF-kB (p65 subunit) 
expression, tumor necrosis factor alpha (TNF-α), heat shock protein- 
70 (HSP70). Increase: glutathione (GSH). 
Immunohistochemistry: remarkable preservation of the liver 
parenchyma architecture, prevention of the inflammatory 
recruitment. 

(Fernández et al., 
2008) 

Preconditioning: 1 mg/kg, rectal insufflations, 15 treatments, one 
per day, before ischemia/reperfusion. 
Cycloheximide (CHX) to promote protein synthesis inhibition after 
OzoneOP treatment. 

Reduction: serum alanine aminotransferase (ALT), aspartate 
aminotransferase (AST), malondialdehyde (MAD), 4-hydroxyalke-
nals. Increase: SOD (MnSOD), glutathione (GSH), GSH/GSSG. 
Histological lesions: normal morphology of the acinus like sham- 
operated. Ultrastructural analysis: normal appearance of 
mithocondrial, rough endoplasmatic reticulum and peroxisome, no 
alteration on nucleus structure. 

(Ajamieh et al., 
2005) 

Preconditioning: 1 mg/kg, rectal insufflations, 15 treatments, one 
per day, before ischemia/reperfusion and/or ischaemic 
preconditioning. Oxygen was another control comparison. 

Reduction: serum alanine aminotransferase (ALT), aspartate 
aminotransferase (AST), 5’-NT, malondialdehyde (MDA), 4 
hydroxyalkenals. calcium, calpain, total Xanthine dehydrogenase 
(XDH), xanthine oxidase (XO). Increase: total sylfhydryl groups. 
Improvement in histological parameters: normal morphology of 
hepatic lobuli. 

(Ajamieh et al., 
2002) 

Preconditioning: 1 mg/kg, rectal insufflations, 15 treatments, one 
per day, before carbon tetrachloride (CCl4) (1 ml/kg). An ozone 
control group was ozone without CCl4. 

Reduction: uric acid, lactate, thiobarbituric acid-reactive substances 
(TBARS). Increase: hepatic glycogen, liver weight (LW)/body 
weight (BW) ratios, superoxide dismutase (SOD), catalase (CAT). 
Histopathological findings: the permanence of glycogen deposits in 
hepatic cells was proved, only a minimal non-parenquimatous cell 
reaction co-existed around the central vein. 

(Candelario-Jalil 
et al., 2001) 

Preconditioning: 0.7 mg/kg, intraperitoneally, 15 applications 
(once daily), before methotrexate (Mtx) (6 mg/kg). 

Reduction: malondialdehyde (MDA). Increase: superoxide 
dismutase (SOD), glutathione peroxidase (GSH-Px). 
Histologically: ILEUM: less inflammatory cell infiltration and 
edema, reduction in vacuolated cells in the epithelium; LIVER/ 
KIDNEY: no significant change, due probably to the cumulative 
prolonged effect of Mtx on these tissues. 

(Kesik et al., 2009) 

Preconditioning: 10, 30, 50 μg/ml, intraperitoneally, 5 days, before 
sepsi induced by intraperitoneal injection of rat fecal material (0.5 g 
per kg of animals weight) extracted from another donor rat. A 
control group was performed with Oxygen. 

Reduction dose-dependent manner in LIVER/LUNG: conjugated 
dienes (CD), thiobarbituric acid-reactive substances (TBARS), Total 
pro-oxidant activity. Increase dose-dependent manner: superoxide 
dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), 
Total antioxidant activity (TAC). 

(Guanche et al., 
2010) 

Preconditioning: 0.8, 2.4, 4 mg/kg, intraperitoneally, daily for 5 
days, with/without sepsis. A control was with Oxygen. 

Reduction: serum alanine amino transferase (ALT), aspartate amino 
transferase (AST), creatinine (CRE), thiobarbituric acid reactive 
substances (TBARS), myeloperoxidase (MPO). Increase: superoxide 
dismutase (SOD), glutathione peroxidase (GSH-Px). 

(Rodriguez et al., 
2009) 

150 mg/kg, intraperitoneally, single dose for 10 days, at the same 
time Escherichia coli toxin (LPS) (20 mg/kg). 

Reduction: lactate dehydrogenase (LDH) (Liver, Kidney, Lungs, 
Heart). Increase: Succinate Dehydrogenase (SDH) (Lungs, Heart), 
adenosine triphosphatase (ATPase) (no Kidney), acid phosphatase 
(AcPase) (Liver, Kidney, Lungs, Heart), β-Glucuronidase (Liver, 
Kidney, Lungs). 
Histochemically detected activity of succinate dehydrogenase 
(SDH): extinguished enzymatic activity in central parts of the lobule 
and paralleled by narrowing of zone I (Liver). 
Histochemically detected activity of lactate dehydrogenase (LDH): 
increased activity (hepatocytes, Kupffer cells, Liver). 
Histochemically detected activity of adenosine triphosphatase 
(ATPase): decrease intensity of the reaction for ATPase (Liver). 
Histochemically detected activity of acid phosphatase (AcPase): 
lower decrease in activity (Liver). 
Histochemically detectable activity of succinate dehydrogenase 
(SDH): the reaction in tubular epithelial cells was slightly more 
pronounced (Kidney). 
Histochemically detected activity of lactic dehydrogenase (LDH): 
less pronounced stimulation of enzyme in principal tubules and 
other portions of nephrons (Kidney). 
Histochemically detected activity of adenosine triphosphatase 
(ATPase): decreased intensity of the reaction in renal glomeruli and 
in walls of blood vessels, particularly those of low caliper (Kidney). 
Histochemically detected activity of acid phosphatase (AcPase): 
decreased intensity of the reaction pertained in principal tubuli and 
collecting duts (Kidney). 
Histochemically detected activity of succinate dehydrogenase 
(SDH): no more pronounced alterations (Lungs). 
Histochemically detected activity of lactate dehydrogenase (LDH): 
stimulation was less pronounced (Lungs). 
Histochemically detected activity of adenosine triphosphatase 
(ATPase): no changing (Lungs). 

(Madej et al., 2007) 
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Table 2 (continued ) 

Tissues Dosages Results References 

Histochemically detected activity of acid phosphatase (AcPase): 
decreased activity (Lungs), 

LUNG 

Preconditioning: 0.7 mg/kg, intraperitoneally, 5 applications (once 
daily), before total body irradiation (TBI) (6 Gy). 

Reduction: malondialdehyde (MDA), serum tumor necrosis factor 
alpha (TNF-a), interleukin-1 beta (IL-1β). Increase: superoxide 
dismutase (SOD). 
Histopathological evaluation: reduction in alveolar area, interstitial 
congestion, and alveolar and bronchiolar hemorrhage. 

(Bakkal et al., 2013) 

Preconditioning: 100 μg/kg, intraperitoneally, once daily for 10 
days, before ischemia/reperfusion. A control was performed with 
Oxygen. 

Reduction: malondialdehyde (MDA), myeloperoxidase (MPO), 
inflammasome (NLRP3), apoptosis-associated speck-like protein 
containing a caspase activation and recruitment domain (ASC), un- 
cleavable cysteine-requiring aspartate protease-1 (procaspase-1), 
cysteine-requiring aspartate protease-1 (caspase-1), apoptotic 
index, interleukin-1 beta (IL-1β). Increase: transcription factor Nrf2, 
superoxide dismutase (SOD). 
Macroscopic and histologic view: dark and edematous tissue, inter 
alveolar septum, rupturing and alveolar space hemorrhage 
disappear. 

(Wang et al., 2018c) 

Preconditioning: 0.8, 2.4, 4 mg/kg, intraperitoneally, daily for 5 
days, with/without sepsis. A control was performed with Oxygen. 

Reduction: serum alanine amino transferase (ALT), aspartate amino 
transferase (AST), creatinine (CRE), thiobarbituric acid reactive 
substances (TBARS), myeloperoxidase (MPO). Increase: superoxide 
dismutase (SOD), glutathione peroxidase (GSH-Px). 

(Rodriguez et al., 
2009) 

Preconditioning: 
IN VITRO A549 cell lines, 1, 10, 20, 80 mol/L, before H2O2. 

Reduction dose-dependent manner: bcl-2-associated X (BAX), 
nuclear factor NF-κβ, tumor necrosis factor alpha (TNF-α), Inducible 
nitric oxide synthase (iNOS), nitrite levels. Increase dose-dependent 
manner: catalase (CAT), glutathione peroxidase (GSH-Px), 
superoxide dismutase (SOD), glutathione (GSH) expression. 
Morphology: recovered the majority of cells from the toxicity, 
regenerated cell proliferation, prevented 9.6% and 11.0% of cell 
loss. 

(Kucukgul et al., 
2016) 

Preconditioning: 10, 30, 50 μg/ml, intraperitoneally, 5 days, before 
sepsi induced by intraperitoneal injection of rat fecal material (0.5 g 
per kg of animals weight) extracted from another donor rat. A 
control group was performed with Oxygen. 

Reduction dose-dependent manner in LIVER/LUNG: conjugated 
dienes (CD), thiobarbituric acid-reactive substances (TBARS), Total 
pro-oxidant activity (TOS). Increase dose-dependent manner: 
superoxide dismutase (SOD), catalase (CAT), glutathione 
peroxidase (GSH-Px), Total antioxidant activity (TAC). 

(Guanche et al., 
2010) 

150 mg/kg, intraperitoneally, single dose for 10 days, at the same 
time Escherichia coli toxin (LPS) (20 mg/kg). 

Reduction: lactate dehydrogenase (LDH) (Liver, Kidney, Lungs, 
Heart). Increase: Succinate Dehydrogenase (SDH) (Lungs, Heart), 
adenosine triphosphatase (ATPase) (no Kidney), acid phosphatase 
(AcPase) (Liver, Kidney, Lungs, Heart), β-Glucuronidase (Liver, 
Kidney, Lungs). 
Histochemically detected activity of succinate dehydrogenase 
(SDH): extinguished enzymatic activity in central parts of the lobule 
and paralleled by narrowing of zone I (Liver). 
Histochemically detected activity of lactate dehydrogenase (LDH): 
increased activity (hepatocytes, Kupffer cells, Liver). 
Histochemically detected activity of adenosine triphosphatase 
(ATPase): decrease intensity of the reaction for ATPase (Liver). 
Histochemically detected activity of acid phosphatase (AcPase): 
lower decrease in activity (Liver). 
Histochemically detectable activity of succinate dehydrogenase 
(SDH): the reaction in tubular epithelial cells was slightly more 
pronounced (Kidney). 
Histochemically detected activity of lactic dehydrogenase (LDH): 
less pronounced stimulation of enzyme in principal tubules and 
other portions of nephrons (Kidney). 
Histochemically detected activity of adenosine triphosphatase 
(ATPase): decreased intensity of the reaction in renal glomeruli and 
in walls of blood vessels, particularly those of low caliper (Kidney). 
Histochemically detected activity of acid phosphatase (AcPase): 
decreased intensity of the reaction pertained in principal tubuli and 
collecting duts (Kidney). 
Histochemically detected activity of succinate dehydrogenase 
(SDH): no more pronounced alterations (Lungs). 
Histochemically detected activity of lactate dehydrogenase (LDH): 
stimulation was less pronounced (Lungs). 
Histochemically detected activity of adenosine triphosphatase 
(ATPase): no changing (Lungs). 
Histochemically detected activity of acid phosphatase (AcPase): 
decreased activity (Lungs). 

(Madej et al., 2007) 

HEART 

Preconditioning: rectal insufflations as five applications per week. 
In a group: 0.3 mg/kg/day in the first week, and 0.5 mg/kg/day in 
the second week. In another group, 0.6 mg/kg/day in the first week, 
and 1 mg/kg/day in the second week, before ischemia/reperfusion. 
A group was performed with Oxygen. 

Reduction dose-dependent manner: creatine kinase-MB (CK-MB), 
lactate, myeloperoxidase (MPO), total nitrate/nitrite (NOx), 
thiobarbituric acid reactive substances (TBARS). Increase dose 
dependent manner: Myocardial adenine nucleotides (ATP, ADP, 
AMP, TAN), glutathione (GSH). 
Histological examination, ultrastructural analyses: improvement in 
edema in between muscle fibers, and edema within muscle fibers, 
good myofibrillar arrangement with only slight edema around 

(Ahmed et al., 2012) 
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Tissues Dosages Results References 

muscle fibers, mild mitochondrial swelling with decreased matrix 
density and mild disruption of mitochondrial cristae and 
vesiculation, slight margination of chromatin near nuclear 
membrane. 

Preconditioning: 100 μg/kg/day, intraperitoneally, once daily, 5 
days, before ischemia/reperfusion. A control was performed with 
Oxygen. 

Reduction: microtubule-associated protein 1 light chain 3 (LC3BI/ 
II), PTEN-induced putative kinase 1 (PINK1), cytochrome c oxidase 
subunit IV (COX4), Caspase 3, myocardial apoptosis. Increase: 
nuclear factor (erythroid-derived 2)-like 2 (Nrf2), glutamate- 
cysteine ligase catalytic subunit (GCLC), glutamate-cysteine ligase 
modifier subunit (GCLM), superoxide dismutases (SODs) 
expression. 
Morphology: mild mitochondrial injury. 
Validation of: 1. nuclear extracts (TATA-binding protein (TBP) in 
nuclear extracts), 2. mitochondrial fractions separated from the 
cytoplasmic fraction (cytochrome c oxidase subunit IV (COX4) 
detectable). 

(Meng et al., 2017) 

Preconditioning: 0.6 mg/kg, rectal insufflations, twice/week for the 
first 3 months, then once/week till the age of 15 months, in aged 
rats. A control was performed with Oxygen. 

Reduction: malondialdehyde (MDA), protein carbonyls (Pr Co), 
lipofuscin, cytosolic Ca2+ (heart/hippocampus). Increase: 
glutathione (GSH), energy status (ATP, ADP) (heart/hippocampus), 
Na+, K+, ATPase (hippocampus). 

(El-Sawalhi et al., 
2013) 

Preconditioning: 50, 80 mL/kg, single (1x) or repetitive (5x) 
insufflations, in rat cardiac transplant model. 

Prolonged cardiac allograft survival without any adjunctive 
immunosuppressive therapy, not alternated number of red blood 
cells, decreased number of thrombocytes, increase of white blood 
cells, mostly granulocytes. 

(Stadlbauer et al., 
2008) 

Preconditioning; 0.3 mg/kg, rectal insufflations, once on 
alternating days for 20 sessions, before doxorubicin (2 mg/kg). The 
Oxygen group was a further control. 

Reduction: pro- brain natriuretic peptide (BNP), malondialdehyde 
(MDA), advanced oxidation protein products (AOPP). Increase: 
superoxide dismutase (SOD), catalase (CAT). 
Morphology: slight damage, normal morphology of cardiac fibres. 
90% survival rate, reduced loss of body weight. 

(Delgado-Roche 
et al., 2014) 

150 mg/kg, intraperitoneally, single dose for 10 days, at the same 
time Escherichia coli toxin (LPS) (20 mg/kg). 

Reduction: lactate dehydrogenase (LDH) (Liver, Kidney, Lungs, 
Heart). Increase: Succinate Dehydrogenase (SDH) (Lungs, Heart), 
adenosine triphosphatase (ATPase) (no Kidney), acid phosphatase 
(AcPase) (Liver, Kidney, Lungs, Heart), β-Glucuronidase (Liver, 
Kidney, Lungs). 
Histochemically detected activity of succinate dehydrogenase 
(SDH): extinguished enzymatic activity in central parts of the lobule 
and paralleled by narrowing of zone I (Liver). 
Histochemically detected activity of lactate dehydrogenase (LDH): 
increased activity (hepatocytes, Kupffer cells, Liver). 
Histochemically detected activity of adenosine triphosphatase 
(ATPase): decrease intensity of the reaction for ATPase (Liver). 
Histochemically detected activity of acid phosphatase (AcPase): 
lower decrease in activity (Liver). 
Histochemically detectable activity of succinate dehydrogenase 
(SDH): the reaction in tubular epithelial cells was slightly more 
pronounced (Kidney). 
Histochemically detected activity of lactic dehydrogenase (LDH): 
less pronounced stimulation of enzyme in principal tubules and 
other portions of nephrons (Kidney). 
Histochemically detected activity of adenosine triphosphatase 
(ATPase): decreased intensity of the reaction in renal glomeruli and 
in walls of blood vessels, particularly those of low caliper (Kidney). 
Histochemically detected activity of acid phosphatase (AcPase): 
decreased intensity of the reaction pertained in principal tubuli and 
collecting duts (Kidney). 
Histochemically detected activity of succinate dehydrogenase 
(SDH): no more pronounced alterations (Lungs). 
Histochemically detected activity of lactate dehydrogenase (LDH): 
stimulation was less pronounced (Lungs). 
Histochemically detected activity of adenosine triphosphatase 
(ATPase): no changing (Lungs). 
Histochemically detected activity of acid phosphatase (AcPase): 
decreased activity (Lungs). 

(Madej et al., 2007) 

INTESTINE 

Preconditioning: 0.7 mg/kg, intraperitoneally, daily five times, 
before irradiation of 500 cGy. 

Reduction: malondialdehyde (MDA), myeloperoxidase (MPO). 
Increase: bursting pressure values of anastomosis, Hydroxyproline 
(HPO), superoxide dismutase (SOD). 
Histopathological evaluation: improving in anastomotic wound 
healing, granulation tissue development and histological changes 
corresponding to the local inflammatory response. 

(Tasdoven et al., 
2019) 

Preconditioning: 0.7 mg/kg, intraperitoneally, daily five times, 
before total body irradiation with a single dose of 6 Gy. 

Reduction time-dependent manner: serum alanine aminotransferase 
(ALT), aspartate aminotransferase (AST), tumor necrosis factor 
alpha (TNF-α), malondialdehyde (MDA). Increase: superoxide 
dismutase (SOD). 
Histopathological examination: reduction in hepatocellular 
degeneration, inflammation, congestion and dilatation in both 
sinusoids and central veins, reduced inflammatory cell infiltrate in 

(Gultekin, Cakmak 
et al., 2013) 
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Tissues Dosages Results References 

the lamina propria, regular villous structure, abundant goblet cells 
in the epithelium, reduced inflammatory cell infiltrate in the lamina 
propria. 

Preconditioning: 0.7 mg/kg, intraperitoneally, 15 applications 
(once daily), before methotrexate (Mtx) (6 mg/kg). 

Reduction: malondialdehyde (MDA). Increase: superoxide 
dismutase (SOD), glutathione peroxidase (GSH-Px). 
Histologically: ILEUM: less inflammatory cell infiltration and 
edema, reduction in vacuolated cells in the epithelium; LIVER/ 
KIDNEY: no significant change, due probably to the cumulative 
prolonged effect of Mtx on these tissues. 

(Kesik et al., 2009) 

Postconditioning: 0.7 mg/kg/day, intraperitoneally and 
intraluminally, laparotomy and/or ischemia/reperfusion. 

Macroscopic Appearance: increase in mucosal weight in jejunum 
and ileum, bowel weight in jejunum, mucosal DNA and protein in 
jejunum and ileum, villus height and crypt depth in jejunum and 
ileum, crypt cell proliferation in jejunum and ileum, p-ERK protein. 
Reduction: Park’s Injury Score in jejunum and ileum, enterocyte 
apoptosis in jejunum and ileum, caspase 3. 

(Haj et al., 2014) 

COCHLEAR 

Preconditioning: 1 mg/kg, intraperitoneally, 7 days, before 
ischemia/reperfusion. 

Reduction: apoptotic index, malondialdehyde (MDA), the total 
oxidant score (TOS). Increase: superoxide dismutase (SOD), 
glutathione peroxidase (GSH-Px), total antioxidant capacity (TAC), 
catalase (CAT). 
Histological evaluation: increased numbers of glial cells in the spiral 
ganglion, reduced level of vascularization. 

(Onal et al., 2017) 

Postconditioning: 60 ug/mL, rectal and/or intratympanic, 7 days, 
after cisplatin-induced ototoxicity (5-mg/kg/day). The rats were 
tested with distortion product otoacoustic emissions (DPOAE). 

Statistically significant differences in DPOAE results. 
Histopathological scoring: decreased stria vascularis damage, 
decreased inner–outer hair cell damage. 

(Koçak et al., 2016) 

Postconditioning: 30 μg/ml, intravenous, daily administration for 
14 days, at the same time with noise exposure. 

Reduction: malondialdehyde (MDA), % mitochondrial swelling, 
mitochondrial membrane potential (MMP), Glutathione disulfide 
(GSSG), cytochrome c (Brain, cochlear). Increase: glutathione 
(GSH), glutathione peroxidase (GSH-Px), superoxide dismutase 
(SOD) (Brain, cochlear), ATP. 
Histopathological findings: prevents mitochondrial membrane 
potential (MMP) collapse, mitochondrial swelling, cytochrome c 
release. 

(Nasezadeh et al., 
2017) 

SKELETAL 

Preconditioning: 0.7 mg/kg, intraperitoneally; 4 doses, before 
ischemia. 

Reduction: malondialdehyde (MDA), Serum nitrite-nitrate (NOx), 
Inducible nitric oxide synthase (iNOS) immunostaining. Increase: 
glutathione peroxidase (GSH-Px), superoxide dismutase (SOD). 

(Koca et al., 2010) 

Preconditioning: 0.7 mg/kg, 6 days, before ischemic period and/or 
hypothermia. 

Reduction: malondialdehyde (MDA), interleukin-1β (IL-1β), 
creatinine kinase (CK), aspartate aminotransferase (AST), K+, nitric 
oxide (NO). Increase: glutathione peroxidase (GSH-Px), superoxide 
dismutase (SOD). 
iNOS immunohistochemical staining: mild intensity. 

(Ozkan et al., 2015) 

PANCREAS 

Preconditioning: 50 μg/kg, intraperitoneally, once a day for seven 
days. Streptozotocin (STZ) (2 ml). A control was performed with 
Oxygen. 

Reduction: 4-hydroxynonenal (4-HNE), Poly (ADP-ribose) 
polymerase-1 (PARP-1), glucagon, glycemia. Increase: nuclear 
factor Nrf2, glutathione-s-transferase (GST), insulin, leptin. 
Immunohistochemistry: reduction in tissue degeneration evidenced 
by the partial restoration of normal cellular population size of islets 
of Langerhans and absence of islet damage. Immunofluorescence: 
reduction in cell death, decreased DNA damage. 

(Siniscalco et al., 
2018) 

Postconditioning: 0.7-mg/kg, intraperitoneally, daily for 3 days, 
induction of acute necrotizing pancreatitis. A control was 
performed with Oxygen. 

Reduction: serum amylase, neopterin, lipase, aspartate 
aminotransferase (AST), alanine amino transferase (ALT), 
γ-Glutamyl transferase (GT), malondialdehyde (MAD). Increase: 
Alkaline phosphatase (AP), glutathione peroxidase (GSH-Px), 
superoxide dismutase (SOD). 
Increase in weight. Lower number of infected rats. 
Histopathologic analyses: lower degrees of necrosis and leukocyte 
infiltration. Improving in the histological injury score. 

(Uysal et al., 2010) 

ARTHRITIS 
Postconditioning: 80 mg/kg, articular space 3 times/week (3.5 
weeks) after PG/PS-induced arthritis. A control was performed with 
Oxygen. 

Reduction: TNFa and IL-1β expression/protein, nitric oxide (NO), 
Fructolysine. Increase: superoxide Dismutase (SOD), catalase (CAT). 
Ameliorate the join swelling, decrease of arthritis index. 
Histological results: normal morphology. 

(Vaillant et al., 
2013) 

TESTICULAR 
Preconditioning: 1 mg/kg, intraperitoneally, before detorsion for 2 
hours. 

Reduction: Ischemia Modified Albumin (IMA), Total Oxidant Status 
(TOS), Oxidative Stress Index (OSI). 
Histopathological score: lower. 

(Tusat et al., 2017) 

OTHER 
Preconditioning: 1 mg/kg, rectal insufflations, 15 sessions in 5 
weeks, in alternated days, 2 mL/kg of lipofundin. A control group 
was performed with Oxygen. 

Reduction: malondialdehyde (MDA), peroxidation potential (PP), 
advanced oxidation protein products (AOPP), nitric oxide (NO). 
Increase: glutathione (GSH). 
Histopathology: minimal lesions in the aortas, smaller intima/ 
media ratio. 

(Delgado-Roche 
et al., 2013)  
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strategies, and could represent therapeutic targets to minimize the 
deleterious consequences associated to oxidative stress, such as in brain 
aging and NDs. 
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