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Abstract
SARS-CoV-2 infects cells via its spike protein binding to its surface receptor on target cells and results in acute symptoms involving 
especially the lungs known as COVID-19. However, increasing evidence indicates that many patients develop a chronic condition char-
acterized by fatigue and neuropsychiatric symptoms, termed long-COVID. Most of the vaccines produced so far for COVID-19 direct 
mammalian cells via either mRNA or an adenovirus vector to express the spike protein, or administer recombinant spike protein, which 
is recognized by the immune system leading to the production of neutralizing antibodies. Recent publications provide new findings 
that may help decipher the pathogenesis of long-COVID. One paper reported perivascular inflammation in brains of deceased patients 
with COVID-19, while others showed that the spike protein could damage the endothelium in an animal model, that it could disrupt an 
in vitro model of the blood-brain barrier (BBB), and that it can cross the BBB resulting in perivascular inflammation. Moreover, the 
spike protein appears to share antigenic epitopes with human molecular chaperons resulting in autoimmunity and can activate toll-like 
receptors (TLRs), leading to release of inflammatory cytokines. Moreover, some antibodies produced against the spike protein may not 
be neutralizing, but may change its conformation rendering it more likely to bind to its receptor. As a result, one wonders whether the 
spike protein entering the brain or being expressed by brain cells could activate microglia, alone or together with inflammatory cytokines, 
since protective antibodies could not cross the BBB, leading to neuro-inflammation and contributing to long-COVID. Hence, there is 
urgent need to better understand the neurotoxic effects of the spike protein and to consider possible interventions to mitigate spike protein-
related detrimental effects to the brain, possibly via use of small natural molecules, especially the flavonoids luteolin and quercetin.

Keywords  ACE2 · Antibodies · Blood-brain barrier · Brain · Coronavirus · Endothelial cells · Receptor · Spike protein

Introduction

The SARS-CoV-2 infects cells by first binding to its surface 
receptor, angiotensin converting enzyme 2 (ACE2), via its 
corona spike protein [1]. The S protein is trimeric and cata-
lyzed fusion between the viral and host cell membrane; 

this “prefusion” trimer has three receptor-binding domains 
(RBD), while the post fusion structure expresses N-linked 
glycans that may serve to protect against immune responses 
[2]. Infection then leads to a complex immune response 
that involves the release of a “storm” [3, 4] of pro-inflam-
matory cytokines [3–11], especially IL-6 [12–15] and 
IL-1β [16, 17] leading to the development of COVID-19 
[3, 18]. Most infected patients develop antibodies against 
the spike protein, but immune protection against SARS-
CoV-2 may involve more than neutralizing antibodies [19].

A prospective study of more than 3,000 healthy mem-
bers of the US Marines Corps concluded that those sero-
positive could still be infected but had only 20% the risk 
of subsequent re-infection as compared to those who were 
seronegative [20]. It is not known if individuals who get re-
infected do not mount sufficient neutralizing antibodies or 
lack some other aspect of antiviral immunity. New data from 
immunized individuals indicate that the rate of re-infection 
varies depending on the type of vaccine used [21]. There is 
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emerging evidence of reduced neutralization of some SARS-
CoV-2 variants [22].

Hypothesis/Theory

Some of the damaging effects of SARS-CoV-2, especially in 
the brain, may be due to direct action of the Spike protein, 
acting alone or in conjunction with other mediators such as 
inflammatory cytokines, on target cells.

Long‑COVID Syndrome

It is now recognized that many patients infected with 
SARS-CoV-2 develop a post-acute syndrome a few months 
after the initial infection known as “post-acute COVID” 
[23] or “long-COVID” [23–26]. Long-COVID occurs in 
30–50% of COVID patients [23, 27–30] and is charac-
terized by multisystem symptoms, primarily persistent 
fatigue and cognitive impairment [31] that varied consid-
erably among patients [32] and were more common with 
increasing age and female sex [29]. These persistent symp-
toms should not be confused or misinterpreted as persis-
tent infection that has been reported in immunocompro-
mised hosts [33]. Nevertheless, patients with long-COVID 
have not recovered even by 7 months post infection and 
continue to suffer mostly from systemic and neurological 
symptoms [34].

Long-COVID is particularly associated with neurologi-
cal [35–43], neurodegenerative [38, 44, 45], psychiatric 
[46–52], and cognitive [47–57] problems, especially brain 
fog [23, 25, 26, 46, 58–62]. In fact, over 90% of patients who 
were initially hospitalized for COVID-19 and had neuro-
logical symptoms had significantly worse outcome 6 months 
later [63]. Even though some of the mental fatigue experi-
enced by long-haulers may be due to the perceived stress 
[64], the extent of this disability is unlike any other medical 
condition known.

In spite of early impressions that long-COVID may 
develop only in those patients who were hospitalized 
and intubated, increasing evidence indicates that long-
COVID can develop regardless of the severity of the 
original symptoms [61, 65] and has been considered 
the “next health disaster” in the USA [66]. So far the 
duration of long-COVID symptoms is not known, but 
recent data indicate that it may depend on antigen per-
sistence [67] and a sustained specific immune responses 
to SARS-CoV-2 [68].

The neurologic effects of COVID-19 may be due to 
SARS-CoV-2 entering the brain, but the pathways of such 

neurotropism are still unclear [69, 70]. One possibility 
is that the virus crosses or damages the blood-brain bar-
rier (BBB) [71], accompanied by basement membrane 
disruption, in K18-hACE2 transgenic mice infected 
with SARS-CoV-2 [72]. Similar findings were reported 
independently, and it was also shown that the virus was 
detected in human cortical neurons [73]. In another study, 
a fragment specific to SARS-CoV-2 was amplified from 
cultures of a brain specimen from a deceased patient with 
COVID-19, and associated pathology showed neuronal 
necrosis and glial cell hyperplasia [74]. Alternatively, the 
virus could enter from the nose by crossing the neural-
mucosal interface of the olfactory nerve [75] and enter 
the brain via the olfactory nerve tract [76]. Viral entry 
into the brain via gustatory-olfactory trigeminal path-
way eventually compromising the BBB was recently 
reported in deer mice infected with SARS-CoV-2 [77]. 
It is interesting that single-cell RNA sequencing showed 
that ACE2 was not expressed by olfactory sensory or 
bulb neurons but instead was expressed by olfactory epi-
thelium and pericytes [78].

The effect of SARS-CoV-2 to the brain is also not 
well understood. One paper showed the presence of 
megakaryocytes in cortical capillaries that could lead 
to brain ischemia [79] and subsequent cerebrovascu-
lar events [80–82]. In the autopsy report of an infant 
who died with COVID-19, there was evidence of corti-
cal atrophy and severe neuronal loss, and findings were 
restricted to capillaries of the choroid plexus [83]. A 
recent paper did not document any molecular traces of 
SARS-CoV-2 in the brains of deceased patients with 
COVID-19, but detected choroid plexus perturbations 
associated with pathologic morphological changes in the 
microglia [84]. In addition to the evidence discussed 
above of neuronal damage due to SARS-CoV-2, a paper 
reported that the virus can enter a 3D human brain orga-
noid and preferentially targets neurons resulting in their 
death [85]. Such pathology may be explained by the 
expression of the ACE2 receptor by human glial cells 
and neurons [86], exacerbated through the activation of 
the complement and kinin systems [87].

Increasing evidence indicates the involvement of neuro-
inflammation [71, 88, 89] that may damage brain blood 
vessels [90, 91], as well as brain cells [88, 92, 93], pos-
sibly via activation of microglia [94, 95] and mast cells 
[96]. In fact, long-COVID could be considered a state of 
“brain autoimmunity” [22].

In summary, the effect of SARS-CoV-2 to the brain 
could be direct via invasion or indirect effect via damag-
ing endothelial cells and pericytes or via activation of neu-
roimmune responses as has been invoked for neurologic 
complications following HIV [97].
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Direct Effects of Spike Protein

An alternative explanation of the CNS effect of SARS-
CoV-2 may be due to direct effects of the spike protein. 
The spike protein is made up of the S1 subunit containing 
a receptor-binding domain (RBD) that attaches to ACE2 
and the S2 subunit containing a transmembrane anchor 
that mediates fusion of viral and host cell membranes [1]. 
Most infected patients develop antibodies that neutral-
ize the spike protein to various extents. A recent paper 
reported that blood of patients infected with SARS-CoV-2 
contained, in addition to antibodies against the RBD that 
were protective, also antibodies against the N-terminal 
domain (NTD) of the spike protein that induced the open 
conformation of the RBD enhancing its binding ability and 
infectivity in vitro using cultured cells [98]. A more recent 
study of molecular modeling using an antibody from a 
symptomatic COVID-19 patient concluded that there was 
higher NTD binding with the delta variant resulting in 
antibody-dependent enhancement (ADE) [99]. Such inter-
actions, where antibodies can neutralize one serotype 
but are less potent at neutralizing another, are known to 
increase the chances of ADE to the new serotype [100]. 
Even though ADE remains controversial, a recent paper 
reported that virus-mimicking anti-idiotype antibodies 
present after infection or after vaccination may potentially 
explain long-COVD symptoms [101]. These findings may 
potentially explain why those vaccinated against the origi-
nal Wuhan SARS-CoV-2 strain and then exposed to the 
Delta variant may still get infected. Al alternative or addi-
tional explanation may be the fact that immunity to vac-
cines has been reported to decrease over time [102, 103]

It is not yet known if the spike protein is released 
extracellularly after the SARS-CoV-2 infects its target 
cells. Given the absence of infection of the brain dis-
cussed above, the neuropathologic findings may be due 
to the SARS-C0V-2 spike protein. Indirect evidence of 
its presence within the CNS may be the detection of anti-
SARS-CoV-2 antibodies in the CSF of two children who 
died with COVID-10 and had subacute neuropsychiatric 
symptoms [104], even though such antibodies may had 
crossed a disrupted BBB. Free spike protein could have a 
number of direct pathologic actions on different cell types 
(Fig. 1A). These include direct stimulation of peripheral 
nerves [105] and stimulation of release of pro-inflam-
matory and vasoactive mediators [106, 107], especially 
platelet-activating factor (PAF) [108, 109].

A number of papers have reported direct pathologic 
effect of the spike protein by itself (without being part of 
the coronavirus). One paper reported that the spike pro-
tein could damage the endothelium in an animal model 
[110], while another paper showed that recombinant S1 

RBD can damage mouse brain endothelial cells in vitro by 
inducing degradation of endothelial junction proteins, thus 
affecting endothelial barrier function [111]. A recent paper 
reported rapid internalization of S1 RBD and of the spike 
RBD active trimer by cultured human brain microvascular 
endothelial cells, followed by increased permeability of 
transferrin and dextran, as well as mitochondrial damage 
[112]. Another recent paper using a 3D-BBB microflu-
idic model showed that S1 upregulated ACE2 expression 
and triggered RhoA activation, a key molecule regulating 
endothelial cytoskeleton [113]. Yet, another paper reported 
that spike-transfected human epithelial cells showed 
increased senescence-associated secretory and inflamma-
tory proteins [114].

Two other papers reported that the spike protein could 
disrupt the barrier function in an in vitro model of the 
blood-brain barrier (BBB) [115] and that the S1 protein can 
actually cross the BBB and enter the brain in mice [116] 
(Fig. 1A). Using transgenic mice expressing the human 
sigma protein, it was shown that intranasal infection with 
SARS-CoV-2 rapidly induced ischemic-like reactivity in 
brain pericytes and the S protein reached the brain of the 
mice [117].

In addition to direct damage, the spike protein appears to 
share antigenic epitopes with human molecular chaperons 
resulting in autoimmunity against endothelial cells [118]. 
Moreover, a recent paper showed that spike epitopes could 
form heterodimeric complexes with selected human glial 
proteins [119]. Interestingly, it was shown that three recom-
binant sigma protein peptides exhibited molecular interac-
tions with acetylcholinesterase and antioxidant enzymes 
both in silico and in tad poles in vivo [120].

Interestingly, symptoms experienced by long-COVID 
patients, especially cognitive dysfunction [121–123], are 
similar [106] to those present in patients with mast cell 
activation syndrome (MCAS) [124, 125], in whom mast 
cells can be stimulated by environmental and stress trig-
gers [126], including viruses [127] such as SARS-CoV-2 
[107, 128]. Mast cells are located perivascularly in close 
proximity to neurons, especially in the hypothalamus [129, 
130], where functional mast cell-neuron interactions have 
been documented [130, 131]. Mast cells also interact with 
microglia [132] leading to their activation [133] and neuro-
inflammation [134].

SARS-CoV-2 binding may not be limited to the ACE2 
receptor. New evidence indicates that the spike protein also 
binds to heparan sulfate (HS) molecules expressed on the 
surface of target cells, with mutant variants having higher 
binding affinity to HS [135]. This binding may be due to 
the fact that the SARS-CoV-2 spike protein contains four 
more positively charged and five fewer negatively charged 
residues than SARS-CoV, thus increasing the binding affin-
ity of SARS-CoV-2 for HS [136]. Apparently, binding to 
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HS allows the virus to reach the ACE2 receptor, and the 
RBD portion of the spike protein can engage both HS and 
ACE2 without dissociation of one or the other ligand [137]. 
The S1 subunit can also bind to the surface glycoprotein 
neuropilin-1 (NRP-1), thus increasing infectivity, but also 
dysregulating angiogenesis, immune responses, and neu-
ronal development [138, 139]. Different coronavirus variants 
have evolved more efficient electrostatic interactions to allow 
them to bind to the ACE2 receptor [140]. SARS-CoV-2 also 
appears to become “pre-activated” by the proprotein con-
vertase furin, thus bypassing the target cell proteases for 
entry [141].

SARS-CoV-2 can do additional damage by activating 
toll-like receptors (TLRs), especially TLR2, leading to 
secretion of pro-inflammatory cytokines independent of 
viral entry [142, 143]. Such immune-mediating molecules 

could contribute to neurologic symptoms [144] as a result 
of or in addition to the action of the spike protein. Moreo-
ver, activating TLR4 increases expression of ACE2 [145] 
further enhancing viral infectivity in an autocrine loop. 
Activation of TLRs may not only involve activation of 
inflammasomes [146], but also activation of the mam-
malian target of rapamycin (mTOR) complex [147, 148], 
which is invoked in the pathogenesis of many neuropsychi-
atric diseases [149] (Fig. 2). Increased levels of a number 
of pro-inflammatory cytokines have been detected in the 
CSF of COVID-19 patients [150], especially IL-6 [150, 
151]. In fact, use of an anti-IL-6 antibody or IL-6 recep-
tor antibody reduced neuronal injury in a mouse model, 
accompanied by inflammation and neuronal death unre-
lated to hypoxia [152]. Integration of serum levels of IL-6 

Fig. 1.   A Diagrammatic repre-
sentation of how SARS-CoV-2 
spike protein can stimulate 
different cell types and col-
lectively contribute to the 
pathogenesis of long-COVID. 
B Diagrammatic representation 
of how SARS-CoV-2 can cross 
the blood-brain barrier (BBB) 
through endothelial cell gaps or 
how free spike protein can dam-
age the integrity of the BBB 
and enter the brain.
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and heparin-binding protein were shown to have signifi-
cant predictive value for severity of COVID-19 [153].

A recent paper reported cloning and expressing 26 of 
the 29 proteins encoded by the SARS-CoV-2 genome and 
showed most proteins, especially non-structural protein 
(NSP) 2, 5, and 7, induced significant changes in endothe-
lial permeability [154]. These findings imply that SARS-
CoV2-associated proteins other than the spike protein may 
contribute to pathologic effects on their own, sequentially or 
synergistically with the structural sigma protein.

Lastly, a recent paper analyzed human fetal expression 
of six different S protein “interactors” and showed weak 
expression of ACE2 and TMPRSS2, but high expression 
of furin with peak expression 12–26 weeks post concep-
tion; moreover, using publically available single-cell RNA 
sequencing datasets, it was shown that these interactors 
showed higher co-expression with neurons [155]. This find-
ing indicates that the spike protein can adversely affect the 
developing brain and potentially lead to neurologic com-
plications in neonates of infected mothers [156], including 
autism spectrum disorder [157].

Discussion

A major unaddressed issue, especially with respect to the 
pathogenesis of long-COVID, is whether the spike protein 
that enters the brain or is expressed in neurons and glial cells 
can activate microglia directly or via stimulation of mast 

cells leading to neuro-inflammation [158]. This pathogenetic 
process would go on unhindered in the absence of any neu-
tralizing antibodies since they do not cross the BBB, thus 
contributing to the pathogenesis of long-COVID. Moreover, 
such spike protein-induced neurocognitive damage could 
be worse in vulnerable populations like those with minimal 
cognitive impairment [159] or others suffering from trau-
matic brain injury [160].

There are presently no biologics that can block SARS-
CoV-2 binding to its receptor(s). Certain biologics aimed 
at blocking IL-6 [161] or IL-1 [162] have been reported to 
improve clinical status of patients with COVID-19 However, 
a meta-analysis of clinical trials using IL-6 antagonists as an 
add-on to usual care did not reduce the risk of stroke [163], 
and a recent double-blind, randomized placebo-controlled 
study showed no benefit of an Il-6 blocker [164]. This con-
clusion may not be surprising as these humanized antibodies 
are not likely to cross the BBB unless it has already been 
disrupted. It is interesting that a main source of IL-6 is the 
mast cells [165–167], which have been reported to secrete 
it after stimulation with IL-1 [168] and acute stress [169]. 
Moreover, IL-6 can be constitutively released from human 
mast cells bearing the D816V-KIT mutation [170] and act 
on mast cell in an autocrine fashion to stimulate their pro-
liferation [171].

This manuscript does not attempt to review and discuss 
all possible drugs, biologics, or natural molecules that could 
interfere with SARS-CoC-2 binding and its effects on tar-
get cells. Rather, it focuses on certain natural molecules for 

Fig. 2.   Diagrammatic repre-
sentation of how SARS-CoV-2 
spike protein can stimulate 
endothelial cells, mast cells, 
microglial cells, and neurons 
first by binding to the ACE2 
receptor costimulated by bind-
ing to heparin sulfate, and then 
acted upon by a serine protease 
before entering the nucleus. 
SARS-CoV-2 can also stimulate 
Toll-like receptors (TLRs) and 
lead to the synthesis and release 
of pro-inflammatory cytokines 
via activation of the inflam-
masomes and or mTOR. The 
diagram also shows the targets 
of the inhibitory actions of 
luteolin, methoxyluteolin, and 
quercetin (green line), which 
may be used to prevent or treat 
the development of long-
COVID.
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which there is sufficient basic and clinical evidence sup-
porting their possible usefulness, both in prevention and 
treatment, especially in long-COVID. A number of recent 
reviews have discussed the potential use of natural molecules 
in that capacity [172–174]. Some simulation and in vitro 
studies have reported the potential benefit of small mole-
cules found in Ginkgo biloba, such as the flavonoid quercetin 
discussed later. For instance, extracts from Ginkgo biloba 
leaves were identified as potential inhibitors of SARS-
CoV-23CL(pro) using large-scale screening [175]. Another 
Ginkgo biloba extract was reported to block TNFα-induced 
reactive oxygen species from human aortic endothelial cells 
[176]. The Ginkgo biloba extract EGb 761 was beneficial 
in generalized anxiety disorder [177] and dementia [178], 
actions that may be useful for the neuropsychiatric aspects 
of long-COVID. Ginkgolic acid (GA) was shown to inhibit 
the fusion and synthesis of viral proteins [179]. Other stud-
ies have shown that green tea catechins could be useful in 
COVID-19 [180, 181], especially against entry of SARS-
CoV-2 [182]. The broccoli extract sulforaphane inhibited 
expression of IL-6 and IL-8 induced by the SARS-CoV-2 
spike protein in bronchial epithelial cells [183].

Certain natural flavonoids [184] have been proposed as 
prophylaxis or treatment against COVID-19 [185–189]. 
Such flavonoids are found in green plants and seeds and 
possess potent anti-oxidant, anti-inflammatory, and cyto-
protective properties [184]. However, their consumption as 
part of the diet does not provide sufficient systemic levels. 
However, there are a number of sources of pharmaceutical-
grade purity (>98%) using different biomasses such as Cit-
rus limon, Cynara cardunculus (artichoke), oregano, and 
Saphora japonicum.

In particular, a number of studies using in silico 
approaches identified the flavonol quercetin and the struc-
turally related flavone luteolin as a potential strong block-
ers of RBD [190–192]. Luteolin and some of its methylated 
analogues have a number of beneficial actions with respect 
to long-COVID: broad antiviral properties [193–195], inhi-
bition of coronavirus entry [127, 196, 197], and inhibition 
of the serine protease required for spike protein process-
ing [198, 199]. Furthermore, luteolin inhibits activation 
of both microglia [200–203] and mast cells [204, 205] via 
inhibition of signaling pathways involving the inflamma-
some [206, 207] and mTOR (Fig. 2) in both mast cells [205] 
and microglia [203]. The novel luteolin structural analogue 
tetramethoxyluteolin (methoxyluteolin) is an even more 
potent inhibitor than luteolin [203–206].

With respect to long-COVID especially, luteolin could 
prevent neuro-inflammation [208–211], is neuroprotective 
[208, 210, 212, 213], and reduces cognitive dysfunction 
[214–218], especially brain fog [58, 60, 62].

Quercetin has been discussed in a few recent studies [219, 
220], including an open-label clinical study showing good 

tolerability and benefit [221]. A double-blind, placebo-con-
trolled, randomized study using a liposomal preparation of 
luteolin (PureLut) in long-COVID patients is underway. Com-
bining quercetin with luteolin may provide additional benefits, 
especially when formulated in olive pomace oil (FibroProtek) 
that increases oral absorption, that is otherwise quite limited 
(<10%) [222]. Moreover, olive pomace oil provides additional 
antiviral [223] and anti-inflammatory [224]. Such liposomal 
preparations are available [222] and have been successfully 
used in pilot clinical trials [225] and reduced neuropsychiatric 
symptoms and associated serum IL-6 levels [226].

Conclusion

Further studies are urgently needed to address the neu-
ropathogenesis of SARS-CoV-2 infection [227, 228] or the 
long-term effects of COVID-19 especially in the brain [229]. 
COVID vaccines have been enormously helpful [230–232], 
but there have been reports of rare neurological complica-
tions including Guillain-Barre syndrome and Bell’s palsy 
[233]. These may be related to the recent finding that the 
spike protein expressed in response to mRNA vaccines 
was detected in the circulation as early as 1 day post vac-
cination and became undetectable by day 14 [234]. Hence, 
we should try to limit or prevent spike-related detrimental 
effects especially to the brain and their potential contribution 
to the development of long-COVID.
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