Positively disrupting medicine using innovative technology

Tailor Made Compounding was launched in the U.S. in January of 2016. We have since become a major contributor to peptide medicines in the integrative health space.

Through our compounding expertise, knowledge and experience, we have quickly grown as one of the top compounding pharmacies in the nation. Together, with our sister pharmacies around the world, we have established a reputation for working closely with our physicians and are well known for obtaining difficult to source and hard to compound pharmaceuticals. Our sister facility and first establishment, Como compounding in Melbourne, has been working with peptide therapies for over a decade. After witnessing the success these products were having for both doctors and patients in Australia, we saw the demand to bring our compounding expertise to the United States. Since the inception of TMC, we have sourced and compounded over 40 unique peptides. We are proud to be the first in the United States to offer compounds like CJC 1295, Bremelanotide, PT 141, BPC-157, and Epitalon and continue to introduce new and exciting compounds to our formulary.

At Tailor Made, we pride ourselves in being partners with our practitioners and their staff. That’s why a major part of what we do involves educating our prescribers on the products we develop, including their clinical indications, and dosing. Through building these relationships and creating cutting-edge peptide therapies, we promise to maintain our status as leaders in the industry. Collectively, all of our locations work to support the same mission; To positively disrupt medicine using innovative technologies through education and partnership.
At Tailor Made Compounding, we want you to have all the required information to understand the products we offer. Our peptide fact sheets contain a description, protocol, and clinical research for each product.

If you have any further questions please reach out to us:

Phone: 1 859 887 0013
Email: admin@tailormadecompounding.com
3-Desoxy DHEA

DESCRIPTION:

3-Desoxy DHEA is a competitive aromatase inhibitor for use in controlling estrogen and increasing endogenous testosterone production. This compound is shown to potently reduce aromatase activity through binding to the enzyme and blocking access to endogenous estrogen precursors (androstenedione, testosterone). The competitive inhibition offers a more short term solution to estrogen control, as aromatase inhibition only occurs while 3-Desoxy DHEA is present in the body. 3-Desoxy DHEA is a relatively quickly metabolized compound and has an excellent potency with IC50 and Ki values. 3-Desoxy DHEA offers you a new option for estrogen control and natural testosterone elevation along with a high potency coupled with better dose control.

PROTOCOL:

Content & Potency: 100mg capsules provided in quantity of 30.

Suggested dosage: Take 1 capsule by mouth once daily.

CLINICAL RESEARCH:

What is desoxy-DHEA and How Does it Work?

Although Desoxy DHEA is an effective competitive inhibitor of aromatase it is not nearly as potent as SERMs or other steroidal and non-steroidal suicide inhibitors. The structure–activity relationships mentioned are not comprehensive as there undoubtedly exist additional structural manipulations that occur to further enhance aromatase activity. Therefore, it is NOT an appropriate replacement to prescription compounds when heavy aromatase activity is required. It does however, offer a cost-effective, safe, and legal method of estrogen management as validated by independent lab tests and selected in vitro data. Competitive aromatase inhibition works differently than suicide substrate inhibition, which is the mode of action through which other over the counter aromatase inhibitors such as 6-OXO and ATD work. Competitive inhibition offers a more short term solution to estrogen control, as aromatase inhibition only occurs while Desoxy DHEA is present in the body. Desoxy DHEA is a relatively quickly metabolized compound. So with Desoxy DHEA Tailor Made offers you a new option for estrogen control.

5-amino-1MQ

DESCRIPTION:

5-amino-1MQ is a small, selective, membrane permeable molecule that is an inhibitor of nicotinamide N-methyltransferase (NNMT), a cytosolic enzyme that plays a role in cellular metabolism and energy homeostasis. NNMT has been found to be up-regulated in white adipose tissue of mice compared to other tissues, thus, NNMT is an ideal target for anti-obesity medication. 5-amino-1MQ is a derivative of methylquinolinium (MQ) which has exhibited a high efficacy in NNMT inhibition, cell viability, and membrane permeability. It did not have any effect on the activity of any other enzymes in the relevant metabolic cycles, therefore reducing the risks of potential side effects. This NNMT inhibitor could be used to prevent adipogenesis and type II diabetes and reverse diet-induced obesity as a result of increased intracellular NAD+ and SAM.

In a study using diet-induced obese mice fed a high fat diet, the effects of 5-amino-1MQ on obesity measures and plasma lipid were evaluated. After 11 days, mice treated with 5-amino-1MQ lost weight, exhibited a decrease in white adipose mass and cholesterol levels, and displayed reduced lipogenesis. The results of this study validate NNMT as a practical target to treat obesity and related metabolic conditions and support the development of an NNMT inhibitor therapeutics to reverse diet-induced obesity.

PROTOCOL:

Content & Potency: 100mcg (.5ml) daily for 20 days 30 minutes after oral administration of NAD+

Suggested dosage: 150mcg (.5ml) daily for 20 days 30 minutes after oral administration of NAD+

CLINICAL RESEARCH:

Selective and membrane-permeable small molecule inhibitors of nicotinamide N-methyltransferase reverse high fat diet-induced obesity in mice

There is a critical need for new mechanism-of-action drugs that reduce the burden of obesity and associated chronic metabolic comorbidites. A potentially novel target to treat obesity and type 2 diabetes is nicotinamide N-methyltransferase (NNMT), a cytosolic enzyme with newly identified roles in cellular metabolism and energy homeostasis. To validate NNMT as an anti-obesity drug target, we investigated the permeability, selectivity, mechanism, and physiological properties of a series of small molecule NNMT inhibitors. Membrane permeability of NNMT inhibitors was characterized using parallel artificial membrane permeability and Caco-2 cell assays. Selectivity was tested against structurally-related methyltransferases and nicotinamide adenine dinucleotide (NAD+)- salvage pathway enzymes. Effects of NNMT inhibitors on lipogenesis and intracellular levels of metabolites, including NNMT reaction products-1-methylquinolinium (1-MQA) and 5-amino-1MQ were evaluated in cultured adipocytes. Effects of a potent NNMT inhibitor on obesity measures and plasma lipid were assessed in diet-induced obese mice fed a high-fat diet. Methylquinolinium scaffolds with primary amine substitutions displayed high permeability from passive and active transport across membranes. Importantly, methylquinolinium analogues displayed high selectivity, not inhibiting related SAM-dependent methyltransferases or enzymes in the NAD+ salvage pathway. NNMT inhibitors reduced intracellular 1-MQA, increased intracellular NAD+ and S(-5’)-adenosyl-L-methionine (SAM), and suppressed lipogenesis in adipocytes. Treatment of diet-induced obese mice systemically with a potent NNMT inhibitor significantly reduced body weight and white adipose mass, decreased adipocyte size, and lowered plasma total cholesterol levels. Notably, administration of NNMT inhibitors did not impact total food intake or produce any observable adverse effects. These results support development of small molecule NNMT inhibitors as therapeutics to reverse diet-induced obesity and validate NNMT as a viable target to treat obesity and related metabolic conditions. Increased Bax of key cellular energy regulators, including NAD+ and SAM, may potentially define the therapeutic mechanism-of-action of NNMT inhibitors.

A full copy of all trials are available from Tailor Made Compounding Pharmacy. Please contact us for more info.
Amlexanox

Purity: >98% (HPLC on request) | **Molecular Formula:** C16H14N2O4
Molecular Weight: 298.3 g/mol | **Sequence:** Non-Peptide

DESCRIPTION:
Amlexanox is an anti-inflammatory and anti-allergic compound which has traditionally been used to treat ulcers by reducing healing time and pain. It has multiple mechanisms of action such as inhibiting inflammation by inhibiting the release of histamine and leukotrienes. It has been shown to selectively inhibit TBK1 and IKK-ε, producing reversible weight loss and improved insulin sensitivity. It is through this mechanism that it has produced substantial results in terms of reducing HbA1C levels and increase insulin sensitivity.

PROTOCOL:
Content & Potency: 40mg capsules provided in a quantity of 90.
Suggested dosage: Take one capsule by mouth 3 times daily.

CLINICAL RESEARCH:
Inhibition of IKKe and TBK1 improves glucose control in a subset of patients with type 2 diabetes.

Numerous studies indicate an inflammatory link between obesity and type 2 diabetes. The inflammatory kinases IKKe and TBK1 are elevated in obesity; their inhibition in obese mice reduces weight, insulin resistance, fatty liver and inflammation. Here we studied amlexanox, an inhibitor of IKKe/TBK1, in a proof-of-concept randomized, double blind, placebo-controlled study of 42 obese patients with type 2 diabetes and nonalcoholic fatty liver disease. Treatment of patients with amlexanox produced a statistically significant reduction in Hemoglobin A1c and fructosamine. Interestingly, a subset of drug responders also exhibited improvements in insulin sensitivity and hepatic steatosis. This subgroup was characterized by a distinct inflammatory gene expression signature from biopsied subcutaneous fat at baseline. They also exhibited a unique pattern of gene expression changes in response to amlexanox, consistent with increased energy expenditure. Together, these data suggest that IKKe/TBK1 inhibitors may be effective therapies for metabolic disease in an identifiable subset of patients.

Purity: >98% (HPLC on request) | **Molecular Formula:** H8N2M0S4
Molecular Weight: 260.28 g/mol | **Sequence:** Non-Peptide

DESCRIPTION:
Ammonium tetrathiophenylphosphate (TBM) was developed as a non-toxic treatment for Wilson’s disease, which is a condition that results in copper buildup in the body. Tetrathiophenylphosphate binds both food copper and endogenously produced copper and prevents their absorption when taken with food. When taken without food it enters the blood and binds with available copper to prevent it being used by cells. Tetrathiophenylphosphate has also shown to be a promising treatment for cancer. Copper is involved in turning on the growth of new blood vessels that tumors depend on for growth. By depriving the tumors of the copper supply that is needed for new blood vessels, the growth may be slowed or stabilized. It has also been shown to target the copper transporter ATP7A and enhance the sensitivity of breast cancer to Cisplatin treatment, as well as, decreasing the development of resistance to cisplatin.

PROTOCOL:
Content & Potency: 40mg capsules provided in a quantity of 90.
Suggested dosage: Take one capsule by mouth three times daily between meals.

CLINICAL RESEARCH:
Ammonium Tetrathiophenylphosphate treatment targets the copper transporter ATP7A and enhances sensitivity of breast cancer to cisplatin.

Cisplatin is an effective breast cancer drug but resistance often develops over prolonged chemotherapy. Therefore, we performed a candidate approach RNAi screen in combination with cisplatin treatment to identify molecular pathways conferring survival advantages. The screen identified ATP7A as a therapeutic target. ATP7A is a copper ATPase transporter responsible for intercellular movement and sequestering of cisplatin. Pharmaceutical replacement for ATP7A by ammonium tetrathiophenylphosphate (TM) enhanced cisplatin treatment in breast cancer cells. Allograft and xenograft models in athymic nude mice treated with cisplatin/TM exhibited retarded tumor growth, reduced accumulation of cancer stem cells and decreased cell proliferation as compared to mono-treatment with cisplatin or TM. Cisplatin/TM treatment of cisplatin-resistant tumors reduced ATP7A protein levels, attenuated cisplatin sequestering by ATP7A, increased nuclear availability of cisplatin, and subsequently enhanced DNA damage and apoptosis. Microarray analysis of gene ontology pathways that responded uniquely to cisplatin/TM double treatment depicted changes in cell cycle regulation, specifically in the G1/S transition. These findings offer the potential to combat platinum-resistant tumors and sensitize patients to conventional breast cancer treatment by identifying and targeting the resistant tumors’ unique molecular adaptations.

Chisholm, Cristine & Wang, Haitao & Hang-Heng, Wong, Ada & Vazquez-Ortiz, Guelaguetza & Chen, Weiping & Xu, Xiaoling & Deng, Chu-Xia. Ammonium Tetrathiophenylphosphate (TBM) was developed as a non-toxic treatment for Wilson’s disease, which is a condition that results in copper buildup in the body. Tetrathiophenylphosphate binds both food copper and endogenously produced copper and prevents their absorption when taken with food. When taken without food it enters the blood and binds with available copper to prevent it being used by cells. Tetrathiophenylphosphate has also shown to be a promising treatment for cancer. Copper is involved in turning on the growth of new blood vessels that tumors depend on for growth. By depriving the tumors of the copper supply that is needed for new blood vessels, the growth may be slowed or stabilized. It has also been shown to target the copper transporter ATP7A and enhance the sensitivity of breast cancer to Cisplatin treatment, as well as, decreasing the development of resistance to cisplatin.

PROTOCOL:
Content & Potency: 40mg capsules provided in a quantity of 90.
Suggested dosage: Take one capsule by mouth three times daily between meals.

CLINICAL RESEARCH:
Ammonium Tetrathiophenylphosphate treatment targets the copper transporter ATP7A and enhances sensitivity of breast cancer to cisplatin.

Cisplatin is an effective breast cancer drug but resistance often develops over prolonged chemotherapy. Therefore, we performed a candidate approach RNAi screen in combination with cisplatin treatment to identify molecular pathways conferring survival advantages. The screen identified ATP7A as a therapeutic target. ATP7A is a copper ATPase transporter responsible for intercellular movement and sequestering of cisplatin. Pharmaceutical replacement for ATP7A by ammonium tetrathiophenylphosphate (TM) enhanced cisplatin treatment in breast cancer cells. Allograft and xenograft models in athymic nude mice treated with cisplatin/TM exhibited retarded tumor growth, reduced accumulation of cancer stem cells and decreased cell proliferation as compared to mono-treatment with cisplatin or TM. Cisplatin/TM treatment of cisplatin-resistant tumors reduced ATP7A protein levels, attenuated cisplatin sequestering by ATP7A, increased nuclear availability of cisplatin, and subsequently enhanced DNA damage and apoptosis. Microarray analysis of gene ontology pathways that responded uniquely to cisplatin/TM double treatment depicted changes in cell cycle regulation, specifically in the G1/S transition. These findings offer the potential to combat platinum-resistant tumors and sensitize patients to conventional breast cancer treatment by identifying and targeting the resistant tumors’ unique molecular adaptations.

Aniracetam

DESCRIPTION:
Aniracetam employs a similar method of action to other racetam derivatives. It has been shown to specifically stimulate the AMPA receptor site. The AMPA receptor is the most common glutamate-activated receptor associated with the Central Nervous System and its functions. AMPA receptors play a role in learning and memory formation. Aniracetam seems to have a higher affinity with the AMPA receptors than other racemic compounds. Another interesting action of Aniracetam is the observed anxiety-reducing effects. It completes this action without causing sedation and the anxiolytic benefit of the substance has been extensively studied in animal models. This anxiolytic response is believed to be caused in part, by activation of the D2 and D3 dopamine receptors. Nicotinic ACh receptor activation is also believed to contribute to anxiolytic effects and nootropic effects as well. Additionally, Aniracetam seems to enact on the 5-HTP(2a) receptor which helps to process Serotonin and may further advance anxiolytic/antidepressant functions.

PROTOCOL:
Content & Potency: 375mg capsules provided in a quantity of 60.
Suggested dosage: Take two capsules by mouth with food.

CLINICAL RESEARCH:
Clinical Efficacy of Aniracetam, Either as Monotherapy or Combined with Cholinesterase Inhibitors, in Patients with Cognitive Impairment: A Comparative Open Study

In the present study, we aimed to evaluate the efficacy of aniracetam, either as monotherapy or combined with cholinesterase inhibitors (ChEIs), in terms of several neuropsychological parameters, in a considerable number of patients with dementia. In our prospective, open-label study, we enrolled a total of 276 patients (mean age 71 ± 8 years, 95 males) with cognitive disorders. Our study population comprised four groups: no treatment group (n = 75), aniracetam monotherapy group (n = 58), ChEIs monotherapy group (n = 68), and group of combined treatment (n = 68). Patients were examined with validated neuropsychological tests at baseline, 3, 6, and 12 months of treatment. In patients treated with aniracetam, all studied parameters were adequately maintained at 6 and 12 months, while emotional state was significantly improved at 3 months. In patients treated with ChEIs, we observed a significant cognitive deterioration at 12 months. The comparison between aniracetam and ChEIs in patients with relatively mild dementia (15 ≤ MMSE ≤ 25) revealed a significantly better cognitive performance with aniracetam at 6 months and improved functionality at 3 months. Comparing aniracetam monotherapy with combined treatment in the same population, aniracetam performed better in the cognitive scale at 6 months, and displayed a notable tendency for enhanced mood at 12 months and improved functionality at 6 months.

Conclusions: Our findings indicate that aniracetam (a nootropic compound with glutamatergic activity and neuroprotective potential) is a promising option for patients with cognitive deficit of mild severity. It preserved all neuropsychological parameters for at least 12 months, and seemed to exert a favorable effect on emotional stability of demented patients.

Molecular Weight: 219.237 g/mol | Sequence: Non-Peptide
Purity: >98% (HPLC on request)

Aniracetam: Molar Weight: 219.237 g/mol | Sequence: Non-Peptide
Molecular Formula: C12H13NO3

AOD 9604

DESCRIPTION:
AOD 9604 is a modified form of amino acids 176-191 of the GH proteins. Investigators at Monash University discovered that the fat-reducing effects of GH appear to be controlled by a small region near one end of the GH molecule. This region, which consists of amino acids 176-191, is less than 10% of the total size of the GH Molecule and appears to have no effect on growth or insulin resistance. This hypothesis was proven in animals to a tremendous degree with specimen losing a significant amount of fat mass. However, in phase three clinical trials the peptide didn't mean its confidence interval. Instead, it is now being studied for its effect on bone and cartilage. AOD 9604 possesses many other regenerative properties associated with growth hormone. Currently, trials are underway to show the application of AOD 9604 in osteoarthritis, Hypercholesterolemia, bone and cartilage repair & pain. AOD 9604 has an excellent safety profile, recently obtaining Human GRAS status in the USA.

PROTOCOL:
Content & Potency: 1200mcg/ml subcutaneous injectable provided in a 5ml vial.
Suggested dosage: Inject 0.25ml subcutaneously once daily for 20 days.

CLINICAL RESEARCH:
Safety and Tolerability of the Hexadecapeptide AOD 9604 in humans

Background: The human growth hormone (hGH) has fat loss properties making it a potential candidate to treat obesity. AOD 9604 is a peptide fragment of the C-terminus of hGH (Tyr-hGH177-191), which harbors the fat reducing activity of IGF, without its negative effects. In this paper the safety data of AOD 9604 obtained in clinical trials are summarized.

Methods: Six randomized, double-blind, placebo-controlled trials were performed with AOD 9604. Special focus was given to undesired effects associated with hGH treatment: increases in IGF-1 levels, insulin resistance, and impaired glucose tolerance. Blood samples were analyzed for presence of anti-AOD 9604 antibodies to exclude immunogenicity.

Results: AOD 9604 had no effect on serum IGF-1 levels, which confirms the hypothesis that AOD 9604 does not act via IGF-1. Results of oral glucose tolerance test demonstrated that, in contrast with hGH, AOD 9604 has no negative effect on carbohydrate metabolism. There were no anti-AOD 9604 antibodies detected in any of the patients selected for antibody assay. In none of the studies did a withdrawal or serious adverse event occur related to intake of AOD 9604.

Conclusion: AOD 9604 displayed a very good safety and tolerability profile indistinguishable from placebo. AOD 9604 did not result in any of the adverse effects associated with full-length hGH treatment.

A full copy of all trials are available from Tailor Made Compounding Pharmacy. Please contact us for more info.
AOD 9604 + HA

DESCRIPTION:
AOD9604 is a GH fragment which comprised the last 16 amino acids of the larger growth hormone molecule. Although originally studied for fat loss, further studies have transitioned it's application for regenerative medicine. In combination with hyaluronic acid (HA), it is now being used to help regenerate hyaline cartilage and is showing strong efficacy in the treatment of osteoarthritis. The combination acts to enhance the differentiation of adipose mesenchymal stem cells into bone, promote protoglycan and collagen production in chondrocytes, and promote differentiation of myoblasts into C2C12 cells; all of which are essential for bone, cartilage, and muscle repair. These studies indicate that it has stronger therapeutic benefits compared to Bone Marrow Aspirate Concentrate (BMAC) and Platelet Rich Plasma (PRP) therapy, which have also been emerging as candidates for osteoarthritis medications. AOD9604 + HA has proceeded to human WOMAC trials which allow the combination to be investigated for on an osteoarthritis index which considers pain, stiffness, and functionality on a variety of scores.

PROTOCOL:
Content & Potency: AOD 1000mcg/ml + HA 10mg/ml intra-articular injectable provided in a 5ml vial.
Suggested dosage: 0.5-0.75m injected intra-articularly by a medical professional once a week for 4 weeks, then once a month for 5 months.

CLINICAL RESEARCH:
Effect of Intra-articular Injection of AOD9604 with or without Hyaluronic Acid in Rabbit Osteoarthritis Model
Objective: To investigate the effects of AOD9604 intra-articular injections with or without hyaluronic acid (HA) in a collagenase-induced knee osteoarthritis (OA) rabbit model.
Design: Mature New Zealand white rabbits (n=32) were randomly administered 2 mg collagenase type II twice in each knee joint. Weekly injections of 0.6 ml saline (Group 1), 6 mg HA (Group 2), 0.25 mg AOD9604 (Group 3), and 0.25 mg AOD9604 with 6 mg HA (Group 4) were administered for 4-7 weeks after the first intra-articular collagenase injection. The degree of cartilage degeneration was assessed using morphological and histopathological findings, and the degree of lameness was observed at 8 weeks after the first collagenase injection.

RESULTS:
Results: Mean gross morphological and histopathological scores were significantly higher in Group 1 than in Groups 2, 3, and 4, and the scores were significantly lower in Group 4 than in Groups 2 and 3. The lameness period in Group 4 was significantly shorter than those in Groups 1, 2, and 3. The lameness period in Group 1 was significantly longer than those in Groups 2 and 3.
Conclusion: Intra-articular AOD9604 injections using ultrasound guidance enhanced cartilage regeneration, and AOD9604 and HA injections were more effective than HA or AOD9604 injections alone in the collagenase-induced knee OA rabbit model.

BPC-157

DESCRIPTION:
Pentadecapeptide BPC 157, composed of 15 amino acids, is a partial sequence of body protein protection compound (BPC) that is discovered in and isolated from human gastric juice. Experimentally it has been demonstrated to accelerate the healing of many different wounds, including tendon-to-bone healing and superior healing of damaged ligaments. Additionally, BPC 157 has shown to protect organs and aids in the prevention of gastric ulcers. BPC-157 acts systemically in the digestive tract to combat leaky gut, IBS, gastrointestinal cramps, and Crohn's disease. This peptide has been known to exhibit analogic characteristics as well. Those who suffer from discomfort due to muscle sprains, tears and damage may benefit from treatment with this peptide. It can also help to aid skin burns at a faster rate by increasing blood flow to damaged tissues.

PROTOCOL:
Content & Potency: • Injectable: 2000mcg/ml subcutaneous injectable provided in a 5ml vial.
• Oral: 500mcg capsule provided in a quantity of 30.
• Nasal: 2mg/mL nasal spray in a 3mL bottle
• Cream: 100mcg/mL transdermal 30g
BPC/HOD/GHK-<0 2mg/1mg/2mg/mL 30mL
Suggested dosage: • Injectable: 0.15ml injected subcutaneously every day for 30 days.
• Oral: 30 capsules at 500mcg. Take one capsule by mouth once daily for 30 days.

CLINICAL RESEARCH:
The Promoting effect of Pentadecapeptide BPC 157 on tendon healing involves tendon outgrowth, cell survival, and cell migration
Many growth factors such as epidermal growth factor (EGF), transforming growth factor-β (TGF-β), and bone morphogenetic proteins (BMPs) have been used to improve the healing of torn tendon in the lab. However, the short duration of these easily digested growth factors hampers their clinical usage. Gastric pentadecapeptide BPC 157, which has been discovered in and isolated from gastric juice, is highly stable and resistant to hydrolysis or enzyme digestion, even in the digestive tract to combat leaky gut, IBS, gastrointestinal cramps, and Crohn's disease. It can also help to aid skin burns at a faster rate by increasing blood flow to damaged tissues.

Boon Kim, Sang & Kwon, Dong & Koak, Hyun & Shin, Yong & Han, Hyun-Jung & Hwa Lee, Jong & Choi, Seok Hwa. (2010). Additive Effects of AOD9604 + HA on Intra-articular Injection of AOD9604 with or without Hyaluronic Acid in Rabbit Osteoarthritis Model
Chung-Hsun Chang, Wen-Chung,Tsai Miao-Sui Lin, Ya-Hui Hsu, and Jong-Hwei Su Pang. (2010). Additive Effects of Pentadecapeptide BPC 157, composed of 15 amino acids, is a partial sequence of body protection compound (BPC) that is discovered in and isolated from human gastric juice. Experimentally it has been demonstrated to accelerate the healing of many different wounds, including tendon-to-bone healing and superior healing of damaged ligaments. Additionally, BPC 157 has shown to protect organs and aids in the prevention of gastric ulcers. BPC-157 acts systemically in the digestive tract to combat leaky gut, IBS, gastrointestinal cramps, and Crohn's disease. This peptide has been known to exhibit analogic characteristics as well. Those who suffer from discomfort due to muscle sprains, tears and damage may benefit from treatment with this peptide. It can also help to aid skin burns at a faster rate by increasing blood flow to damaged tissues.
Cerebrolysin

DESCRIPTION:
Cerebrolysin (synonym FPE 1070) is a nootropic drug which consists of low molecular peptides which possess neuroprotective and neurotrophic repair properties. The active fragment of Cerebrolysin is made of proteins with very low molecular masses that do not exceed 10,000 daltons. These means they can penetrate the blood-brain (or blood-SCF) barrier and reach neurons directly, making the drug able to show organo-specific combined effects towards the brain. Cerebrolysin has been proven to have neurotrophic action similar to nerve growth factors, which cause peripheral and central neuronal stimulation. It improves efficiency within the brain's aerobic metabolic processes and improves intracellular peptide synthesis. The neuroprotective properties of this nootropic agent help to shield neurons from lactocidosis, to prevent the formation of free radicals, and have been studied in Parkinson's, Alzheimer's, MS, ALS, TBI, and stroke.

PROTOCOL:
Content & Potency: 215.2mg/mL x 10mL x 4 vials: ready-to-inject subcutaneously
Suggested dosage: Inject 1ml daily for over a 40 week course.

CLINICAL RESEARCH:
Cerebrolysin in Alzheimer's disease: a randomized, double-blind, placebo-controlled trial with a neurotropic agent
Cerebrolysin (Cere) is a compound with neurotrophic activity. It has been shown to be effective in the treatment of Alzheimer's disease (AD) in earlier trials. In this multicenter, randomized, double-blind, placebo-controlled, parallel-group study, patients were injected intravenously with placebo or 30ml. Cere five days per week for four weeks. Effects on cognition and global function were evaluated with the Alzheimer Disease Assessment Scale – Cognitive Subscale (ADAS-Cog) and the Clinician Interview Based Impression of Change with Caregiver Input scale (CIBIC+) 4, 12, 24 weeks after the beginning of the injections. 192 patients were enrolled; 95 were randomized to placebo, and 97 to Cere. At baseline, there was a significant difference between groups for age, age of onset of dementia, and the number of patients with hallucinations. At week 12 there was a significant difference on the CIBIC+ (p = 0.033) in favor of Cere. The number of CIBIC+ responders (score < 4), was significantly higher (p = 0.007), with 68 (76%) in the Cere group and 51 (57%) in the placebo group. Trends were noted in the Disability Assessment in Dementia scale and the Cornell Depression Scale. Adverse events were recorded in 73% of placebo and 64% of Cere patients. Most common adverse events were headaches, dizziness, weight loss and anxiety. Conclusions: Cere treatment was well tolerated and resulted in significant improvements in the global score two months after the end of active treatment.

M. Pannicke, S. Gauthier, H. Mooser, M. Windisch
A full copy of all trials are available from Tailor Made Compounding Pharmacy. Please contact us for more info.

CJC-1295

DESCRIPTION:
CJC 1295 stimulates growth hormone release via binding to the pituitary. This peptide directly mimics the endogenous Growth Hormone Releasing Hormone (GHRH) typically secreted by the hypothalamus. CJC 1295 outperforms 2 chemical forms. One includes a binding group called DAC, or Drug Activity Complex. The DAC bind to serum albumin and significantly increases half life. However, for many reasons, this is not the preferred product for many patients clinically.

Before, the tetraaspartylated 29 amino acid modified growth releasing factor often called Mod-GHRH is the version of CJC most use clinically. This version of the CJC 1295 outperforms the older and outdated GHRHs such as Sermorelin. The half-life of Sermorelin ranges from 8-12 minutes, whereas the half-life of CJC 1295 extends to 30 minutes.

As a result of better stimulation and release you see many clinical results including fat loss, increases lean muscle mass, better lipid profiles, better deep wave sleep and increased repair and recovery. Use in combination with Ipramorelin, the CJC is one of the most widely prescribed products.

PROTOCOL:
Content & Potency: 2000mcg/ml subcutaneous injection provided in a 2ml vial.
Suggested dosage: Inject 0.10ml subcutaneously 5 out of 7 nights of the week before bedtime on an empty stomach.

***We suggest using the CJC 1295 in combination with Ipramorelin as it provides a synergistic effect, generating five times the benefits of using the CJC 1295 or Ipramorelin alone. The combination allows for a maximized release of GH because CJC 1295 and Ipramorelin have different mechanisms of action and work on different receptors (GHRH-R & Ghrelin-R).

CLINICAL RESEARCH:
Factor I Secretion by CJC 1295, a Long-Acting Analog of GH-Releasing Hormone, in Healthy Adults
Content: Therapeutic use of GHRH to enhance GH secretion is limited by its short duration of action.
Objective: The objective of this study was to examine the pharmacokinetic profile, pharmacodynamic effects, and safety of CJC 1295, a long-acting GHRH analog.
Design: The study design was two randomized, placebo-controlled, double-blind, ascending dose trials with durations of 28 and 49 d.
Setting: The study was performed at two investigational sites.
Participants: Healthy subjects, ages 21–63 y, were studied.
Interventions: CJC 1295 or placebo was administered as one of four ascending single doses in the first study and in two or three weekly or biweekly doses in the second study.
Main Outcome Measures: The main outcome measures were peak concentrations and area under the curve of GH and IGF-I, standard pharmacokinetic parameters were used for CJC 1295. Results: After a single injection of CJC 1295, there were dose-dependent increases in mean plasma GH concentrations by 2– 5-fold for 6 d or more and in mean plasma IGF-I concentrations by 1.5- to 3-fold for 9-11 d. The estimated half-life of CJC 1295 was 5.8-8.1 d. After multiple CJC 1295 doses, mean IGF-I levels remained above baseline for up to 28 d. No serious adverse reactions were reported.
Conclusions: Subcutaneous administration of CJC 1295 resulted in sustained, dose-dependent increases in GH and IGF-I levels in healthy adults and was safe and relatively well tolerated, particularly at doses of 80 or 160 mcg/kg. There was evidence of a cumulative effect after multiple doses. These data support the potential utility of CJC 1295 as a therapeutic agent.

A full copy of all trials are available from Tailor Made Compounding Pharmacy. Please contact us for more info.
DHH-B

Purity: >98% (HPLC on request) | Molecular Formula: C24H31NO4
Molecular Weight: 397.51 g/mol | Sequence: Non-peptide

DESCRIPTION:
DHH-B, dihydrohonokiol-B, is a natural supplement which has anxiolytic-effects. Treatment with DHH-B does not cause any significant changes in motor activity or muscle relaxation. Benzodiazepines are some of the most commonly prescribed medications in the United States. These anxiolytics have many well-known side effects including motor function and more. That being said, this product has the potential to help people transition from benzodiazepines to DHH-B or act as an alternative to benzodiazepines.

PROTOCOL:
Content & Potency: 30, 7.5mg capsules
Suggested dosage: Take 1-2 capsules as needed

CLINICAL RESEARCH:
Comparative assessment of the anxiolytic-like activities of honokiol and derivatives

A Department of Neuropsychopharmacology (Tsumura), Gunma University School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan Research Laboratories, Tsumura and Co., Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan Department of Biochemistry, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA

Honokiol has previously been shown to be an effective anxiolytic-like agent in mice when administered for 7 days at 0.2 mg/kg/day prior to evaluation in an elevated plus-maze, while 20 mg/kg is required for efficacy as a single oral dose. The aim of this study was to find analogs of honokiol that are more effective for acute administration. Among the eight analogs evaluated, one partially reduced derivative of honokiol [30-(2-propynyl)-5-propyl-(1,10-biphenyl)-2,4-diol] exhibited significant anxiolytic-like activity at 0.04 mg/kg. Following oral administration of 1 mg/kg of this analog, anxiolytic-like activity was clearly evident at 1 h, peaked at 3 h, and remained significant for longer than 4 h after treatment. Combined administration of the derivative with diazepam led to enhanced anxiolytic-like efficacy. Moreover, as with diazepam, the anxiolytic-like effect of the analog was reduced by flumazenil. In contrast, bicuculline, a GABAA antagonist, had no effect on the activity of the derivative. Taken together, these results suggest that this analog of honokiol acts at the benzodiazepine recognition site of the GABAA receptor complex.

Hisashi Kuribara, Eiko Kobata, Masayuki Kimura, Susan T. Winsten, Yuji Maruyama.*

A full copy of all trials are available from Tailor Made Compounding Pharmacy. Please contact us for more info.

Dihexa

Purity: >98% (HPLC on request) | Molecular Formula: C27H44N4O5
Molecular Weight: 504.672 g/mol | Sequence: Non-peptide

DESCRIPTION:
Dihexa is a peptide variant derived from angiotensin IV which has been found to potentially improve cognitive function in animal models of disease such as Alzheimer’s. Angiotensin IV is a derivative of the potent vasoconstrictor angiotensin II and has been shown to enhance acquisition, consolidation, and recall of learning.

PROTOCOL:
Content & Potency: • Cream: 20mg/ml transdermal cream provided in a 30ml transdermal applicator.
• Oral: 1mg or 2mg capsules
Suggested dosage: • Cream: Apply 0.5-1.0ml (2-4 clicks) to inner forearms once daily, rub in until absorbed.
• Oral: Taken once daily.

CLINICAL RESEARCH:
The Procognitive and Synaptogenic Effects of Angiotensin IV–Derived Peptides Are Dependent on Activation of the Hepatocyte Growth Factor / c-Met System

A subset of angiotensin IV (AngIV)–related molecules are known to possess procognitive/antidementia properties and have been considered as templates for potential therapeutics. However, this potential has not been realized because of two factors: 1) a lack of blood-brain barrier–penetrant analogs, and 2) the absence of a validated mechanism of action. The pharmacokinetic barrier has recently been overcome with the synthesis of the orally active, blood-brain barrier-permeable analog N-hexanoic-tyrosine-isoleucine-(6) aminohexanoic amide (dihexa). Therefore, the goal of this study was to elucidate the mechanism that underlies dihexa’s procognitive activity. Here, we demonstrate that dihexa binds with high affinity to hepatocyte growth factor (HGF) and both dihexa and its parent compound Norleucine 1-AngIV (Nle1-AngIV) induce c-Met phosphorylation in the presence of subthreshold concentrations of HGF and augment HGF-dependent cell scattering. Further, dihexa and Nle1-AngIV induce hippocampal spineogenesis and synaptogenesis similar to HGF itself. These actions were inhibited by an HGF antagonist and a short hairpin RNA directed at c-Met. Most importantly, the procognitive/antidementia capacity of orally delivered dihexa was blocked by an HGF antagonist delivered intracerebroventriculally as measured using the Morris water maze task of spatial learning.

A full copy of all trials are available from Tailor Made Compounding Pharmacy. Please contact us for more info.
DSIP

DESCRIPTION:
DSIP is a well-known neuromodulator and natural somnogenic nonapeptide with many other physiological functions. It is typically found in the brain and easily passes the blood-brain barrier. It is mainly prescribed for the treatment of pain conditions, alcohol and opioid withdrawal, CRH and stress-related symptoms, low testosterone (via stimulation of LH), and even sometimes as an antioxidant and anti-oncogenic protein. It has been discovered and heavily studied for over 40 years, yet, the mechanism of action is still complex and not well understood. The results of studies of DSIP and its analogues over a period of 30 years since its discovery enable one to state with confidence that DSIP is a unique member of the family of peptide neuromodulators. It exhibits a pronounced stress protective action and decreases stress-induced metabolic and functional disorders in human and animal organisms exposed to a variety of stresses. Some of the effects of the peptide are accomplished through the modulating action on central regulatory processes, owing to the systemic antioxidant action, the modulating influence on the activity of GABAergic, glutamatergic, and other neuronal systems. It also works on the expression of early response genes in brain structures, and on the activity of biosynthetic and proteolytic processes. DSIP has traditionally been dosed as an IV infusion, however, it can be given subcutaneously as well. Traditional doses have been 100mcg.

PROTOCOL:

CLINICAL RESEARCH:
In several species DSIP at low doses has been shown to promote sleep. Although its physiological role remains to be clarified, DSIP illustrates several concepts applicable to other brain peptides. These include the bell-shaped dose-response curve, central effects after peripheral administration, a delayed and prolonged time course, and some penetration of the blood-brain barrier in essentially intact form. Concepts applicable to one neuropeptide, therefore, appear to be applicable to others. In this article Abbà Kastin and colleagues review the known effects of DSIP and argue that more work needs to be carried out before it can be labelled functionally.

Enclomiphene

DESCRIPTION:
Enclomiphene is used in the process of treating male hypogonadism (lower function of the reproductive organs) and is a single isomer with pure estrogen antagonism. Enclomiphene is a non-steroidal selective estrogen receptor modulator (SERM) and acts by increasing gonadotropin secretion and gonadal production of testosterone. Enclomiphene has the potential to help the reproductive status in men and improve metabolic profiles. It is a single isofrom of the more abundant clomiphene and has much fewer side effects.

PROTOCOL:

Content & Potency: 25mg capsules provided in a quantity of 30.

Suggested dosage: Take one capsule by mouth once daily.

CLINICAL RESEARCH:

Objective: To determine the effect of enclomiphene citrate in men with secondary hypogonadism.

Methods: An randomized phase IIB study enrolled 124 men with a morning serum T level of <250 ng/dL on 2 occasions. e subjects were randomized to one of two doses of enclomiphene citrate (12.5-mg or 25-mg), 1% topical testosterone, or placebo. Hormone levels of LH, FSH, and T and semen level were measured before, during and after 3 months of treatment.

Results: A total of 113 men received 3 months of treatment, and 73 completed the study and provided both baseline and at least 1 semen sample at the end of the study. All 3 active treatment groups showed significantly increased in total testosterone level from baseline compared with placebo, with no statistically significant difference in testosterone levels found between the active treatment groups compared with placebo.

A full copy of all trials are available from Tailor Made Compounding Pharmacy. Please contact us for more info.
Epithalamin (also known as Epitalon or Epithalone) is the synthetic version of the polypeptide Epithalamin which is naturally produced in humans. The pineal peptide preparation is secreted in the epithalamium-epiphyseal region of the brain. Its more prominent tasks are to regulate metabolism in the epiphysis, increase the sensitivity of hypothalamus to its natural hormonal influences, normalize the function of the anterior pituitary, regulate the levels of gonadotropins and melatonin in the body. Epithalamin increases a person’s resistance to emotional stress and also acts as an antioxidant.

DESCRIPTION:

Epithalan (also known as Epitalon or Epithalone) is a bio-regulator for the endocrine system, especially for the pineal gland, and has been shown to lengthen telomeres in human cells. The mechanisms in Epithalon are a lot more complex than just activating telomerase. It reduces lipid oxidation and ROS, along with normalizing T cell function. It seems to normalize cholesterol and uric acid, along with prolactin levels. It has shown promise in restoring hormonal function. Additionally, it restored and normalized melatonin levels in older patients who have lost some pineal function due to aging.

PROTOCOL:

Content & Potency: 10mg/ml subcutaneous injection provided in a 5ml vial. Suggested dosage: Inject 10mg every 3 days for 15 days - repeat twice yearly.

CLINICAL RESEARCH:

Peptide Geroprotector from the Pituitary Gland Inhibits Rapid Aging of Elderly People: Results of 15-Year Follow-Up

The paper presents the results of randomized comparative study of the efficiency of peptide geroprotector from the pituitary gland in elderly patients with rapidly aging cardiovascular system. Over three years 39 coronary patients received, in addition to basic therapy, regular courses of epithalamin (peptide drug), while 40 coronary patients received, in addition to basic therapy, regular cardiovascular system. Over three years 39 coronary patients (control group) received basic therapy alone.

Long-term treatment with epithalamin (6 courses over 3 years) decelerated aging of the cardiovascular system, prevented age-associated impairment of physical endurance, normalized circadian rhythm of melatonin production and carbohydrate and lipid metabolism. A significantly lower mortality in the group of patients treated with epithalamin than just activating telomerase. It reduces lipid oxidation and ROS, along with normalizing T cell function. It seems to normalize cholesterol and uric acid, along with prolactin levels. It has shown promise in restoring hormonal function. Additionally, it restored and normalized melatonin levels in older patients who have lost some pineal function due to aging.

FGL(L):

FGL(L) is a peptide with neurotrophic and memory enhancing properties. FGL peptide is a variant of the natural neural cell adhesion molecule. Neural cell adhesion molecule (NCAM) is a membrane-bound glycoprotein expressed on the surface of neuronal and glial cells. FGL(L) was directly created as a fibroblast growth factor receptor agonist.

DESCRIPTION:

FGL(L) is a peptide with neurotrophic and memory enhancing properties. FGL peptide is a variant of the natural neural cell adhesion molecule. Neural cell adhesion molecule (NCAM) is a membrane-bound glycoprotein expressed on the surface of neuronal and glial cells. FGL(L) was directly created as a fibroblast growth factor receptor agonist.

PROTOCOL:

Content & Potency: 10mg/ml solution provided in a 3ml vial. Suggested dosage: Inject 0.1ml subcutaneously daily into the abdomen.

CLINICAL RESEARCH:

A Neural Cell Adhesion Molecule–Derived Fibroblast Growth Factor Receptor Agonist, the FGL-Peptide, Promotes Early Postnatal Sensorimotor Development and Enhances Social Memory Retention

The neural cell adhesion molecule (NCAM) belongs to the immunoglobulin (Ig) superfamily and is expressed on the surface of neuronal and glial cells. FGL(L) is a peptide with neurotrophic and memory enhancing properties. FGL peptide is a variant of the natural neural cell adhesion molecule. Neural cell adhesion molecule (NCAM) is a membrane-bound glycoprotein expressed on the surface of neuronal and glial cells. FGL(L) was directly created as a fibroblast growth factor receptor agonist.

DESCRIPTION:

A Neural Cell Adhesion Molecule–Derived Fibroblast Growth Factor Receptor Agonist, the FGL-Peptide, Promotes Early Postnatal Sensorimotor Development and Enhances Social Memory Retention

PROTOCOL:

Content & Potency: 10mg/ml solution provided in a 3ml vial. Suggested dosage: Inject 0.1ml subcutaneously daily into the abdomen.

CLINICAL RESEARCH:

A Neural Cell Adhesion Molecule–Derived Fibroblast Growth Factor Receptor Agonist, the FGL-Peptide, Promotes Early Postnatal Sensorimotor Development and Enhances Social Memory Retention

Abstract—The neural cell adhesion molecule (NCAM) belongs to the immunoglobulin (Ig) superfamily and is composed extracellularly of five Ig-like and two fibronectin type III (F3) modules. It plays a pivotal role in neuronal development and synaptic plasticity. NCAM signals via a direct interaction with the fibroblast growth factor receptor (FGFR). A 15-amino-acid long peptide, the FG loop (FGL) peptide, that is derived from the second F3 module of NCAM has been found to activate FGFR1.

We here report that the FGL peptide, when administered intranasally to newborn rats, accelerated early postnatal development of coordination skills. In adult animals s.c. administration of FGL resulted in a prolonged retention of social memory. We found that FGL rapidly penetrated into the blood and cerebrospinal fluid after both intranasal and s.c. administration and remained detectable in the fluids for up to 5 hours.
GHK-Cu

Purity: >98% (HPLC on request) | Molecular Formula: C28H52CuN12O8
Molecular Weight: 748.346 g/mol | Sequence: Non-Peptide

DESCRIPTION:
GHK-Cu is a naturally occurring copper complex that was first identified in human plasma, but has hence been found in multiple locations such as saliva and urine. Copper peptides are small, naturally occurring protein fragments that have high affinity for copper ions, which are critical to normal body function. GHK-Cu has a variety of roles in the human body including, but not limited to, promoting activation of wound healing, attracting immune cells, antioxidant and anti-inflammatory effects, stimulating collagen and glycosaminoglycan synthesis in skin fibroblasts, and promoting blood vessel growth. There has been evidence that has shown that it acts as a feedback signal that is generated after tissue injury. First, it acts as a potent protector of tissue and anti-inflammatory agent that controls the oxidative damage that occurs post-tissue injury. Further, it then plays a big role in signaling tissue remodeling which removes damaged/scarred tissue and generates new, healthy tissue. However, these positive effects decline with age because the concentration of GHK-Cu in the body decreases with age. Thus, there is an increase in inflammation, cancerous activity, and tissue destruction. Clinically, it is mostly used to decrease fine lines and wrinkles and to improve hair regrowth.

PROTOCOL:
Content & Potency:
- Injectable: 10mg/ml subcutaneous injection provided in a 5ml vial.
- Topical: 5mg/ml (5%) topical foam provided in a 50ml foaming applicator.

Suggested dosage:
- Injectable: Inject 0.2ml subcutaneously once daily.
- Topical: Apply 1ml (2 pumps) to scalp once daily at night.

CLINICAL RESEARCH:
GHK Peptide as a Natural Modulator of Multiple Cellular Pathways in Skin Regeneration

GHK (glycy-L-histidyl-L-lysinate) is present in human plasma, saliva, and urine but declines with age. It is proposed that GHK functions as a complex with copper 2+, which accelerates wound healing and skin repair. GHK stimulates both synthesis and breakdown of collagen and glycosaminoglycans and modulates the activity of both metalloproteinases and their inhibitors. It stimulates collagen, dermalan sulfate, chondroitin sulfate, and the small proteoglycan, decorin. It also restores replicative viability to fibroblasts after radiation therapy. The molecule attracts immune and endothelial cells to the site of an injury. It accelerates wound-healing of the skin, hair follicles, gastrointestinal tract, bone tissue, and foot pads of dogs. It also induces systemic wound healing in rats, mice, and pigs. In cosmetic products, it has been found to tighten loose skin and improve elasticity, skin density, and firmness, reduce fine lines and wrinkles, reduce photodamage, and hyperpigmentation, and increase keratinocyte proliferation. GHK has been proposed as a therapeutic agent for skin inflammation, chronic obstructive pulmonary disease, and metastatic colon cancer. It is capable of up and down regulating at least 4,000 human genes, essentially resetting DNA to a healthier state. The present review reviews GHK’s role in skin regeneration in the light of recent discoveries.

TRANSDERMAL COMPOUNDING

Glycyrhrhetic acid & Aminophylline Transdermal Fat Loss Cream

Glycyrhetic Acid- Purity: >98% | Molecular Formula: C3OH46O4
Molecular Weight: 470.69 g/mol | Sequence: Non-Peptide
Aminophylline- Purity: >98% | Molecular Formula: C16H24O4
Molecular Weight: 420.43 g/mol | Sequence: Non-Peptide

DESCRIPTION:
Aminophylline and glycyrhetic acid transdermal cream is used for fat loss. Aminophylline and glycyrhetic acid prevent cAMP breakdown. Cyclic AMP (cAMP) functions in several biochemical processes including the regulation of glycogen, sugar, and lipid metabolism. cAMP works by activating protein kinase A (PKA) which assists in glycogen, sugar, and lipid metabolism. Glycyrhetic acid has displayed topical fat reduction from the waist. In a study examining aminophylline cream application, the reduction in waist circumference was significant for both men and women. Over a period of 12 weeks, participants in the study lost 11cm in waist circumference. In differentiated adipocytes, 18β-glycyrrhetic acid increases the level of glyceral release and up-regulates the mRNA of hormone-sensitive lipase, adipose triglyceride lipase, and perilipin, as well as the phosphorylation of hormone-sensitive lipase. 18β-glycyrrhetic acid alters fat mass by directly affecting adipogenesis in maturing preadipocytes and lipolysis in mature adipocytes. Therefore, aminophylline and 18β-glycyrrhetic acid may be useful for treating obesity. Both aminophylline and glycyrhetic acid combined effectively combat fat loss. Aminophylline and glycyrhetic acid fat loss cream yields the best results through topical application.

PROTOCOL:
Content & Potency: Aminophylline/Glycyrrhetic Acid 0.5%/2.5% transdermal cream provided in a 60ml Topicklick cream applicator.
Suggested dosage: Apply 1ml twice daily transdermally.

CLINICAL RESEARCH:
18β-Glycyrrhetic acid inhibits adipogenic differentiation and stimulates lipolysis

18β-Glycyrrhetic acid (18β-GA) obtained from the herb liquorice has various pharmacological properties including anti-inflammatory and anti-bacterial activities. However, potential biological anti-obesity activities are unclear. In this study, novel biological activities of 18β-GA in the adipogenesis of 3T3-L1 preadipocytes and in lipolysis of differentiated adipocytes were identified. Mouse 3T3-L1 cells were used as an in vitro model of adipogenesis and lipolysis, using a mixture of insulin/dexamethasone/3-iso-butyl-1-methylxanthine (IBMX) to induce differentiation. The amount of lipid droplet accumulation was determined by an AdipoRed assay. The expression of several adipogenic transcription factors and enzymes was investigated using real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blotting. 18β-GA dose-dependently (1–40 μM) significantly decreased lipid accumulation in maturing preadipocytes. In 3T3-L1 preadipocytes, 10 μM of 18β-GA down-regulated the transcriptional levels of peroxisome proliferator-activated receptor c, CCAAT/enhancer-binding protein and adiponectin, which are markers of adipogenic differentiation via Akt phosphorylation. Also, in differentiated adipocytes, 18β-GA increased the level of glycerol release and up-regulated the mRNA of hormone-sensitive lipase, adipose TG lipase and perilipin, as well as the phosphorylation of hormone-sensitive lipase at Serine 563. The results indicate that 18β-GA alters fat mass by directly affecting adipogenesis in maturing preadipocytes and lipolysis in mature adipocytes. Thus, 18β-GA may be useful for the treatment of obesity.

A full copy of all trials are available from Tailor Made Compounding Pharmacy. Please contact us for more info.
IGF-1

DESCRIPTION:
IGF-1 is a peptide consisting of 70 amino acids with a molecular weight of 7640 Da. IGF-1 has an A and B chain connected by disulphide bonds, like insulin, which is how it gets its name. The structural similarity to insulin explains the ability of IGF-1 to bind (with low affinity) to the insulin receptor. IGF-1 is secreted by many tissues and the secretory site seems to determine its actions. Most IGF-1 is secreted by the liver and is transported to other tissues, acting as an endocrine hormone. IGF-1 is also secreted by other tissues, including cartilaginous cells, and acts locally as a paracrine hormone.

Most of the IGF-1 produced by the liver is secreted for its proliferative and growth effects. Lower IGF-1 and growth hormone are often associated with excess body fat. IGF-1 and other proteins in the IGF family are growth factors that stimulate the proliferation and survival of various cell types including muscle, bone, and cartilage tissue. IGF-1 plays an important role in childhood growth and continues to have anabolic effects in adults. A synthetic analog of IGF-1, mecasermin, is currently used for the treatment of growth failure. Therapeutic administration of IGF-1 is associated with reversing insulin sensitivity, reducing weight and increasing metabolic expenditure as well potential reversal of degeneration of spinal cord motor neuron axons in certain peripheral neuropathies.

IGF-1 LR3 has a modified amino acid sequence compared to biological IGF-1. It has an additionally arginine at the position 2. By making this change, it gives the molecule higher potency and a much longer half-life. For this reason it is commonly used as long acting version for the same therapeutic reasons as the IGF-1.

PROTOCOL:

Content & Potency: 620mcg/ml subcutaneous injectable provided in two 6.2ml vials. Suggested dosage: Inject 0.4ml subcutaneously once daily.

CLINICAL RESEARCH:
Effects of human growth hormone, insulin-like growth factor I, and diet and exercise on body composition of obese postmenopausal women.

To determine the effects of GH and insulin-like growth factor I (IGF-I) administration, diet, and exercise on weight loss, body composition, basal metabolic rate (BMR), and strength, and that GH and IGF-I given together may enhance fat loss over either given alone.

Groups receiving IGF-I. These data show that obese postmenopausal women can lose weight and fat without GH and GH plus IGF-I group (5.6 +/- 1.4 kg). Fat mass significantly decreased in all groups, with the largest decrease occurring in the GH plus IGF-I group (6.3 +/- 1.8 and 8.4 +/- 2.8 kg), respectively. Despite weight loss, BMR was maintained at steady-state of 0.22 L/kg. The time course of GH stimulation by ipamorelin showed a single episode of GH release with a peak at 0.67 hours and an exponential decline to negligible GH concentration at all doses. The IGF-1/GH concentration relationship was characterized using an indirect response model and population fitting. The model employed a zero-order GH release rate over a finite duration of time to describe the episodic release of GH. Ipamorelin induces the release of GH at all doses levels with the concentration (SC50) required for half-maximal GH stimulation of 214 nmol/L and a maximal GH production rate of 140 45 nmol/kg over 15 minutes) with eight healthy male subjects at each dose level. Concentrations of ipamorelin and growth hormone were measured. The PK parameters showed dose-proportionality, with a short terminal half-life of 2 hours, a clearance of 0.078 L/h/kg and a volume of distribution at steady-state of 0.22 L/kg. Ipamorelin is a selective GH-Secretagogue and doesn’t release the same volumes of cortisol, acetycholine, prolactin and aldosterone. It is for this reason Ipamorelin has been considered the first selective, and best, GH Secretagogue.

PROTOCOL:

Content & Potency: 2000mcg/ml subcutaneous injectable provided in a 5ml vial. Suggested dosage: Inject 0.10ml subcutaneously once daily 5 out of 7 days of the week.

***We suggest using the Ipamorelin in combination with CJC 1295 as it provides a synergistic effect, generating five times the benefits of using the CJC 1295 or Ipamorelin alone. The combination allows for maximized release of GH because the CJC 1295 and Ipamorelin have different mechanisms of action and work on different receptors (GHRH-R & Ghrelin-R).

CLINICAL RESEARCH:
Pharmacokinetic-Pharmacodynamic Modeling of Ipamorelin, a Growth Hormone Releasing Peptide, in Human Volunteers

To examine the pharmacokinetics (PK) and pharmacodynamics (PD) of ipamorelin, a growth hormone (GH) releasing peptide, in healthy volunteers. A trial was conducted with a dose escalation design comprising 5 different infusion rates (4.21, 14.02, 42.13, 84.27 and 140.45 nmol/kg over 15 minutes) with eight healthy male subjects at each dose level. Concentrations of ipamorelin and growth hormone were measured. The PK parameters showed dose-proportionality, with a short terminal half-life of 2 hours, a clearance of 0.078 L/h/kg and a volume of distribution at steady-state of 0.22 L/kg. The time course of GH stimulation by ipamorelin showed a single episode of GH release with a peak at 0.67 hours and an exponential decline to negligible GH concentration at all doses. The ipamorelin-GH concentration relationship was characterized using an indirect response model and population fitting. The model employed a zero-order GH release rate over a finite duration of time to describe the episodic release of GH. Ipamorelin induces the release of GH at all doses levels with the concentration (SC50) required for half-maximal GH stimulation of 214 nmol/L and a maximal GH production rate of 694 mIU/L/h. The inter-individual variability of the PD parameters was larger than that of the PK parameters. The proposed PK/PD model provides a useful characteristic of ipamorelin disposition and GH responses across a range of doses.

Ipamorelin is a selective GH-Secretagogue and ghrelin receptor agonist. The potency of ghrelin stimulation can be compared to GHRP6 with less appetite stimulation properties. However, unlike other GH-Secretagogues this pentapeptide
iRGD

DESCRIPTION:

iRGD is a cyclic peptide that binds to integrins that are expressed on tumor endothelial cells. Upon binding, a protease cleavage event is activated. When this event is activated the peptide is then able to bind neuropilin-1, activating an endocytotic/exocytotic transport pathway. As a result of this, it is able to hone to tumor cells and make them permeable to transport of many types of cancer therapies. This makes traditional cancer therapies target cells better and makes the therapy less toxic. One study showed that doxorubicin, liposomal doxorubicin, Herceptin trastuzumab or Abraxane nab-paclitaxel had greater drug accumulation in the tumor by up to 40-fold than mice injected with one of the drugs alone. They equaled greater reductions in tumor growth. In all, the drug-peptide combination was as effective as threefold higher doses of drug alone.

PROTOCOL:

Content & Potency:

Suggested dosage: 40mcg/kg subcutaneously once daily in combination with other Cancer Therapy research.

CLINICAL RESEARCH:

Co-administration of a Tumor-Penetrating Peptide Enhances the Efficacy of Cancer Drugs

Poor penetration of anti-cancer drugs into tumors can be an important factor limiting their efficacy. Studying mouse tumor models, we show that a previously characterized tumor-penetrating peptide, iRGD (CRGDK/RGPD/EC), increased vascular and tissue permeability in a tumor-specific and neuropilin-1-dependent manner, allowing increased vascular and tissue permeability in a tumor-tumor models, we show that a previously characterized peptide combination was as effective as threefold higher doses of drug alone.

Inject 0.10ml subcutaneously once daily.

Kisspeptin-10

DESCRIPTION:

Kisspeptins are a group of neuroendocrine peptides that stimulate the release of Gonadotropin Releasing Hormone (GnRH) and is involved in the regulation of developmental sex hormones at the beginning stages of puberty. There have been problems in maturation centered around receptor mutations for kisspeptin. Kisspeptins are encoded by the KISS1 gene, which was originally identified as a human metastasis suppressor gene for melanoma and breast cancer. Kisspeptins have shown therapeutic benefits regarding the upregulation of the endogenous production of Luteinizing Hormone (LH) and Follicular Stimulating Hormone (FSH) through the HPA axis. Thus, it can stimulate Leydig cells to produce testosterone without the result of hypogonadism shown with exogenous testosterone usage. The expression of Kiss1 has also been altered in other situations of energy imbalance such as obesity and diabetes. It has also been shown to reverse the effects of hypogonadotropic hypogonadism. It also shows other physiologic effects such as helping with egg implantation and maturation in reproduction, as well as the prevention of ectopic pregnancy. Further, in the kidneys it has been shown to increase aldosterone production as well as pregnenolone breakdown and kisspeptin – angiotensin2 production.

PROTOCOL:

Content & Potency:

Suggested dosage: Inject 0.10ml subcutaneously once daily.

CLINICAL RESEARCH:

Kisspeptin-10 Is a Potent Stimulator of LH and Increases Pulse Frequency in Men

Intravenous bolus kisspeptin-10 resulted in a rapid and dose-dependent rise in serum LH concentration, with maximal stimulation at 1 μg/kg (4.1 ± 0.4 to 12.4 ± 1.7 IU/liter at 30 min, P < 0.001, n = 6). Administration of 3 μg/kg elicited a reduced response vs. 1 μg/kg (P < 0.05). Infusion of kisspeptin-10 at 4 μg/kg · h for 22.5 h elicited an increase in LH from a mean of 5.4 ± 0.7 to 20.8 ± 4.9 IU/liter (n = 4; P < 0.05) and serum testosterone increased from 16.6 ± 2.4 to 24.0 ± 2.5 nmol/liter (P < 0.001). LH pulses were obscured at this high rate of secretion, but a lower dose infusion of kisspeptin-10 (1.5 μg/kg · h) increased mean LH from 5.2 ± 0.8 to 14.1 ± 1.7 IU/liter (n = 4; P < 0.01) and increased LH pulse frequency from 0.7 ± 0.1 to 1.0 ± 0.2 pulses/h (P < 0.05) and secretion burst mass from 3.5 ± 0.4 to 12.8 ± 2.6 IU/liter (P < 0.05). Kisspeptin-10 boluses potently evoke LH secretion in men, and continuous infusion increases testosterone, LH pulse frequency, and pulse size. Kisspeptin analogues have therapeutic potential as regulators of LH and thus testosterone secretion.

Inject 0.10ml subcutaneously once daily.

A full copy of all trials are available from Tailor Made Compounding Pharmacy. Please contact us for more info.
KPV

DESCRIPTION:
KPV (Lysine-Proline-Valine) is a C-terminal tripeptide fragment of α-melanocyte stimulating hormone (α-MSH). α-MSH stimulates the production and release of melanin by melanocytes in skin and hair, acting through melanocortin 1 receptors. Several studies have previously shown that KPV has decreased inflammation and tumorigenesis in the body. The KPV anti-inflammatory effect is Pept1-mediated in intestinal epithelial and immune cells. Pept1 is an oligopeptide transporter that is overexpressed in the in the colonic epithelial cells of chronic ulcerative colitis, which can deliver KPV into cytosol in the intestine. The tripeptide, KPV has significant antimicrobial and anti-inflammatory properties especially in those with psoriasis. Psoriasis is a chronic autoimmune condition which causes the rapid build-up of skin cells and is usually treated using hydrocortisone. In people with psoriasis, KPV has shown to limit symptoms of the condition including itchiness, dryness, redness, peeling, and more. Therefore, KPV could be used for an extended period of time without risking the unwanted complications of long term steroid therapy. KPV is a promising, therapeutic treatment for inflammatory bowel disease (IBD), colon cancer, and inflammatory skin disorders, in particular, psoriasis.

PROTOCOL:
Content & Potency: 30ml TopiClick at 15mg/ml
Suggested dosage: 0.5ml applied to area twice daily

CLINICAL RESEARCH:
Alpha-Melanocyte-Stimulating Hormone and Related Tripeptides: Biochemistry, Anti Inflammatory and Protective Effects in Vitro and in Vivo, and Future Perspectives for the Treatment of Immune-Mediated Inflammatory Diseases

Leuphasyl

DESCRIPTION:
Leuphasyl, pentapeptide-18, is a five amino acid peptide that reduces the depth of wrinkles by contraction of facial muscles. It is an enkephalin modified for enhanced stability that modulates acetylcholine activity in neuron cells and catecholamine release. Leuphasyl targets the wrinkle-formation mechanism of the expression of wrinkles in a unique way, offering an alternative to other cosmetic peptides like argireline and SNAP-8.

PROTOCOL:
Content & Potency: 5%/5% cream (with Argireline) in 30ml TopiClick
Suggested dosage: 1ml applied topically to the face daily

CLINICAL RESEARCH:
The Efficiency and Safety of Leuphasyl—A Botox-Like Peptide

Peptides of synthesis are a very new strategy in cosmetic science and technology for at least two reasons: (1) they are small molecules, easily penetrable in the skin and (2) they are able to induce a very specific action, because all skin cells (keratinocytes, fibroblasts, nervous cells) have mechanisms both peptides show additive effects.

It is important to note that leuphasyl and argireline have a synergistic effect. For 28 days, a cream containing 5% argireline solution and a 5% leuphasyl solution was applied twice daily to the eyes of 43 volunteers. 24.62% wrinkle reduction was observed in the participants using the solution. Due to their complementary mechanisms, both peptides show additive effects. Leuphasyl indicates a proven efficacy for improving firmness and skin tone, reducing fine lines and wrinkles, and moisturizing the skin.
LL-37

Purity: >98% (HPLC on request) | Molecular Formula: C205H340N60O53

DESCRIPTION:
LL-37 is an antimicrobial peptide which belongs to the cathelicidin family of AMPs (antimicrobial peptides). LL-37, like cathelicidins, are stored in neutrophil granules as inactive precursors and are released as mature peptides when neutrophils are stimulated. LL-37 is expressed in various cells and tissues such as circulating neutrophils and myeloid bone marrow cells, epithelial cells of the skin, and is also expressed in the gastrointestinal tract, as well as in the epididymis and lungs. Moreover, production of LL-37 in macrophages is stimulated by vitamin D released by sunlight through the skin. LL-37 plays an important role in the first line of defense against infection and systemic invasion of pathogens at sites of inflammation and wound. It is cytotoxic to both bacterial and normal eukaryotic cells and is significantly resistant to proteolytic degradation in solution. LL-37 shows a broad spectrum of antimicrobial activity against bacteria, enveloped viruses, and fungi. It has also demonstrated success in helping promote wound healing but it may play a negative role in atopic dermatitis and psoriasis.

PROTOCOL:
Content & Potency: 2000mcg/ml subcutaneous injection provided in a 5ml vial.
Suggested dosage: Varies with indication and patient.

CLINICAL RESEARCH:
Membrane Core-Specific Antimicrobial Action of Cathelicidin LL-37 Peptide Switches Between Pore and Nanofibre Formation

Membrane-disrupting antimicrobial peptides provide broad-spectrum defence against localized bacterial invasion in a range of hosts including humans. The most generally held consensus is that targeting to pathogens is based on membrane modulation yields helical-rich fibrous peptide-lipid superstructures. Our results point at alternative design strategies for peptide antimicrobials.

Melanotan II

Purity: >98% (HPLC on request) | Molecular Formula: C50H69N15O9
Molecular Weight: 1024.2 | Sequence: Ac-Nle-Asp-His-D-Phe-Arg-Trp-Lys-NH2(cyclic 2-7)

DESCRIPTION:
Melanotan I and Melanotan II are both analogs of the peptide hormone alpha-melanocyte-stimulating hormone (alpha-MSH) that induces skin tanning. Like its predecessor, Melanotan I, MT 2 plays a role in stimulating melanogenesis and thus provides a protective mechanism against UV rays since under its actions melanocytes are able to increase production and secretion of the hormone melanin. Scientists have also noticed that MT 2 had a positive effect on libido due to its aphrodisiac properties. Additionally, MT 2 exhibits a mild positive fat-mobilizing effect. Melanotan I is an FDA approved drug under the brand name Scenese, Scenese is most commonly used to treat patients that have an intolerance to light.

PROTOCOL:
Content & Potency: 2000mcg/ml subcutaneous injection provided in a 5ml vial.
Suggested dosage: Inject 0.15ml once daily for 1 - 2 weeks then 0.25mL twice weekly thereafter for maintenance.
For CIRS: Inject 100mcg every other day for 40 days.

CLINICAL RESEARCH:
Evaluation of melanotan-II, a super potent cyclic melanotropic peptide in a pilot phase-I clinical study.

A pilot phase I study was conducted with a cyclic heptapeptide analog of alpha-melanocyte-stimulating hormone (alpha-MSH). The lactam-bridged molecule, called Melanotan-II (MT-II), has the structure Ac-Nle4-Asp5-His6-D-Phe7-Arg8-Trp9-Lys10 alpha-MSH4-10.NH2 (MT-II) and has superpotent melanotropic activity in vitro. A single-blind, alternating day (saline or MT-II), placebo-controlled trial was conducted in 5 normal male volunteers at the onset of spontaneous, Penile erections which were increased pigmentation in the face, upper body and buttock, as measured by quantitative reflectance and by visual perception 1 week after MT-II dosing ended. These results demonstrate that MT-II has tanning activity in humans given only 5 low dose every other day by subcutaneous injection. The recommended single MTII dose for future Phase I studies is 0.025 mg/kg/day.

A full copy of all trials are available from Tailor Made Compounding Pharmacy. Please contact us for more info.

A full copy of all trials are available from Tailor Made Compounding Pharmacy. Please contact us for more info.
Met-Enkephalin

Purity: >95% (confirmed by HPLC) | **Molecular Formula:** C27H35N5O7S

Molecular Weight: 573.66 g/mol | **Sequence:** H-Tyr-Gly-Gly-Phe-Met-OH

DESCRIPTION:
In 1975, Met-Enkephalin (ME) was first isolated from porcine brain matter. ME is an endogenous pentapeptide with antagonist activity at the μ and δ opioid receptors. It is one of two forms of enkephalin, the other form being leu-enkephalin. Essentially, this peptide functions as a neurotransmitter or neuromodulator in the central nervous system (CNS). Opioid receptors play a role in numerous physiological processes in the body including pain mediation, opiate dependence, and euphoria. ME acts as a cytokine, a small secreted protein released by cells which have a specific effect on the interactions and communications between cells, and has demonstrated to increase immune functions at low concentration while suppressing at high concentration. In addition, ME behaves as an opioid growth factor (OGF) on many cell types as a receptor that is distinct from the neural opioid receptors. OGF activates a specific receptor called the opioid growth factor receptor (OGFR) or δ-opioid receptor. The OGF and OGFR axis regulates cell growth in normal and abnormal cells. It has been concluded that ME could potentially be used as a drug to treat cancer and work as a strong immune booster. Modulation of the OGF-OGFR receptor axis represents a promising and therapeutic avenue for effective treatment such as cancer (hepatoblastoma, breast, colon, renal, ovarian, pancreatic, melanoma and many others), autoimmune encephalomyelitis, and multiple sclerosis.

PROTOCOL:
Content & Potency: 10mg Lyophilized Vial Suggested dosage: 10mg IV once weekly

CLINICAL RESEARCH:
Opioid growth factor improves clinical benefit and survival in patients with advanced pancreatic Cancer

Background: Advanced pancreatic cancer carries the poorest prognosis of all gastrointestinal malignancies. Once the tumor has spread beyond the margins of the pancreas, chemotherapy is the major treatment modality offered to patients; however, chemotherapy does not significantly improve survival.

Objective: Opioid growth factor (OGF; [Met]-enkephalin) is a natural peptide that has been shown to inhibit the growth of pancreatic cancer in cell culture and in nude mice. The purpose of this study was to evaluate the effects of OGF biotherapy on subjects with advanced pancreatic cancer who failed chemotherapy.

Methods: In a prospective phase II open-labeled clinical trial, 24 subjects who failed standard chemotherapy for advanced pancreatic cancer were treated weekly with OGF 250 μg/kg intravenously. Outcomes measured included clinical benefit, tumor response by radiographic imaging, quality of life, and survival.

Results: Clinical benefit response was experienced by 53% of OGF-treated patients compared to historical controls of 23.8% and 4.8% for gemcitabine and 5-fluorouracil 5-FU, respectively. Of the subjects surviving more than eight weeks, 62% showed either a decrease or stabilization in tumor size by computed tomography. The median survival time for OGF-treated patients was three times that of untreated patients (65.5 versus 21 days, p = 0.001). No adverse effects on hematologic or chemistry parameters were noted, and quality of life surveys suggested improvement with OGF.

Jill P Smith, Sandra J Bingham, David T Mauger, Harold H Harvey, Launiene M Demers, Ian S Zagon

Department of Medicine, Public Health Sciences, Pathology, and Neurosciences and Anesthesia, Pennsylvania State University, College of Medicine, Hershey Medical Center, Hershey, PA, USA

A full copy of all trials are available from Tailor Made Compounding Pharmacy. Please contact us for more info.

TITOL MADE COMPOUNDING

MOTS-c

Purity: >98% (HPLC on request) | **Molecular Formula:** C101H152N28O22S2

Molecular Weight: 2288.6 g/mol | **Sequence:** MRWQMGYFVPRKL

DESCRIPTION:
Human mitochondrial DNA (mtDNA) encodes 37 known genes, including 2 rRNAs, 22 tRNAs and 13 polyprotein subunits of the electron transport chain (ETC) complexes. Recent work has revealed that the rRNA loci contain small open reading frames (ORFs) that can be transcribed and translated into short peptides called mitochondrial-derived peptides (MDPs), which have biological activity. MOTS-c is a mitochondrial-encoded peptide with 16 aa’s encoded within the 125 rRNA locus of mtDNA in human cells.

MOTS-c can translocate into the nucleus in response to metabolic stress and regulation of adaptive nuclear gene expression. This allows the peptide to promote resistance of metabolic stress by upregulating the mitochondrial genome. Upregulating these genes encourages mitochondrial biogenesis. MOTS-c inhibits the methionine-folate cycle resulting in purine synthesis, increase in PCG-1α (a key regulator of energy metabolism), and AICAR (5- Aminomimidazole-4-carboxamide ribonucleotide) accumulation which activates AMPK (5’- adenosine monophosphate-activated protein kinase). This acts as an energy sensor by monitoring the ratio of AMP and ATP. AMPK restores homeostasis by initiating catabolic processes for ATP production in case of energy deficits. In addition, literature suggest that MOTS-c decreases insulin resistance and increases GLUT4 uptake in muscle. The peptide is mainly used for weight loss (regulating muscle and fat metabolism) and energy (cell survival in toxic conditions). MOTS-c is consistently used by sports performance athletes to enhance one’s performance. It also displays a promising effect in longevity. The Japanese long-lived people (population with the longest lifespan in the world) have demonstrated a phenotypic expression and biological link between MOTS-c and an extended lifespan.

PROTOCOL:
Content & Potency:10mg/ml solution provided in a 4ml vial. Suggested dosage: Inject 10mg subcutaneously weekly into the abdomen.

CLINICAL RESEARCH:
The Mitochondrial-Derived Peptide MOTS-c Promotes Metabolic Homeostasis and Reduces Obesity and Insulin Resistance

Mitochondria are known to be functional organelles, but their role as a signaling unit is increasingly being appreciated. The identification of a short open reading frame (ORF) in the mitochondrial DNA (mtDNA) that encodes a signaling peptide, humanin, suggests the possible existence of additional ORFs in the mtDNA. Here we report a ORF within the mitochondrial 125 rRNA encoding a 16-amino-acid peptide named MOTS-c (mitochondrial open reading frame of the 125 rRNA) that regulates insulin sensitivity and metabolic homeostasis. Its primary target organ appears to be the skeletal muscle, and its cellular actions inhibit the folate cycle and its tethered de novo purine biosynthesis, leading to AMPK activation. MOTS-c treatment in mice prevented age-dependent and high-fat-diet-induced insulin resistance, as well as diet-induced obesity. These results suggest that 1 mitochondria may actively regulate metabolic homeostasis at the cellular and organismal level via peptides encoded within their genome.

A full copy of all trials are available from Tailor Made Compounding Pharmacy. Please contact us for more info.
MK-677

DESCRIPTION:

MK-677 is a long-acting orally bioavailable agonist of the GHS-R1a. As such, binds to the same receptor as GHRP2, GHRP6, and Ipalomin also stimulate. Also called Butamoren, it has been shown to cause a predictable rise in IGF-1 but unlike other GH secretagogues doesn’t help to decrease adipose tissue. It has been shown to increase lean muscle mass and might be a good candidate for sarcopenic patients with low bone mineral density. In order to reduce the negative effect of somatotatin, MK-677 is best taken on an empty stomach with no insulin in the system.

PROTOCOL:

Content & Potency: 25mg capsules provided in quantities of 30.

Suggested dosage: Take one capsule by mouth once daily on an empty stomach.

CLINICAL RESEARCH:

Effects of an Oral Ghrelin Mimetic on Body Composition and Clinical Outcomes in Healthy Older Adults A Randomized Trial

Daily administration of MK-677 significantly increased growth hormone and insulin-like growth factor I levels to those of healthy young adults without serious adverse effects. Mean fat-free mass decreased in the placebo group but increased in the MK-677 group (change, 0.5 kg [95% CI, 1.1 to 0.2 kg] vs. 0.5 kg, CL 0.7 to 0.5 kg, respectively; P < 0.001), as did body cell mass, as reflected by intracellular water (change, 1.0 kg [CI, 2.1 to 0.2 kg] vs. 0.8 kg, CL 0.1 to 1.6 kg, respectively; P = 0.22). No significant differences were observed in abdominal visceral fat or total fat mass; however, the average increase in limb fat was greatest in the MK-677 group than the placebo group (1.1 kg vs. 0.24 kg, P = 0.001). Body weight increased 2.7 kg [CI, 0.1 to 1.6 kg], respectively; P < 0.021). No significant differences were observed in total or high-density lipoprotein cholesterol levels. Cortisol levels increased 47 nmol/L (CI, 10.4 to 0.4 mg/dL; P = 0.026); no differences between the groups were observed in total or high-density lipoprotein cholesterol levels. Cortisol levels increased 47 nmol/L (CI, 28 to 71 nmol/L (1.7 to 2.6 g/dL) in MK-677 recipients (P = 0.020). Changes in bone mineral density consistent with increased bone remodeling occurred in MK-677 recipients. Increased fat-free mass did not result in changes in strength or function. Two-year exploratory analyses confirmed the 1-year results.

A full copy of all trials are available from Tailor Made Compounding Pharmacy. Please contact us for more info.

Myristyl

DESCRIPTION:

The hepatic uptake of LDL is highly regulated. The LDL receptor (LDL-R) present on hepatocytes mediates the endocytosis of LDL, and thus regulates the plasma levels of the lipoprotein and cholesterol. In the acidic environment of the endosome, the LDL-R dissociates from its ligand and recycles back to the cell surface for further uptake of LDL. Apo E is an alternate ligand for the LDL-R and mediates the clearance of triglyceride-rich lipoproteins such as chylomicron remnants and VLDL (2). Apo E also binds to additional hepatic receptors such as LDL-R related protein (LRP) and heparan sulfate proteoglycans (HSPG). Like apoE, Ac-hE18A-NH2 and its variants can reduce plasma cholesterol and displays anti-inflammatory properties in model animals. Ac-hE18A-NH2 has already undergone phase 1 clinical trials as a lipid-lowering agent. In a recent study, the myristyl peptide variant of ApoE has been shown to reduce total and LDL cholesterol (even under severe dyslipidemic conditions) in apoE-null mice. As a result, it is thought myristyl can act as an alternative to statins and HMG-CoA reductase inhibitors. Additionally, because of its enhanced potency at lower doses, myristyl has great therapeutic potential to lower cholesterol.

PROTOCOL:

Content & Potency: 5ml vial at 6mg/ml

Suggested dosage: 100mcg/kg once weekly intravenously

CLINICAL RESEARCH:

Novel Fatty Acyl ApoE Mimetic Peptides Have Increased Potency To Reduce Plasma Cholesterol In Mice And Macaques

Ac-hE18A-NH2 is a dual-domain apoE mimetic peptide that possesses the putative receptor binding domain from apoE (LRTRLRKLR, denoted hE, residues 141 to 150) covalently attached to lipid-associating peptide 18A. Like apoE, Ac-hE18A-NH2 reduces plasma cholesterol in animal models and exhibits anti-inflammatory properties independent of cholesterol lowering effect. Ac-hE18A-NH2 has already undergone phase 1 clinical trials as a lipid-lowering agent. To explore the therapeutic potential, we designed and synthesized new analogs by linking α-aminooxycetic acid, octanoic acid, or myristic acid to LRR1R1RR1R2L1R2-NH2 ([(R)-hE18A-NH2] and examined the cholesterol-lowering potency in animals. The modified peptides effectively reduced plasma cholesterol in apoE-null mice fed standard chow or a Western diet; the myristyl analog was the most effective. A single administration of the myristyl analog reduced plasma total and LDL cholesterol in a dose-dependent manner in hypercholesterolemic cynomolgus macaques for up to 1 week despite continuation of a cholesterol-supplemented diet. The myristyl peptide (7.4 mg/kg) reduced total and LDL cholesterol at 24 hours by 64% and 74%, respectively; plasma HDL levels were modestly reduced and returned to baseline by the seventh day. These new analogs should exhibit enhanced potency at lower doses than Ac-hE18A-NH2, which may make them attractive therapeutic candidates for clinical trials.

Gundahakshi M. Anuradha, David W. Garber, Debbie Goldbergh, Eric Merritts, Geeta Duttas, Mykonduri N. Palsangatkar, Thomas C. Regnier, Susan E. App, and C. Beige Whitman" Department of Medicine, University of Alabama at Birmingham Medical Center, Birmingham, Alabama 35294, LipimetiX Development, Inc. 5 Commonwealth Rd. Suite 2A, Wake Forest School of Medicine, Winston-Salem, NC 27157

A full copy of all trials are available from Tailor Made Compounding Pharmacy. Please contact us for more info.
A full copy of all trials are available from Tailor Made Compounding Pharmacy. Please contact us for more info.

molecule has demonstrated several beneficial conversion to NMN and NAD+. This particular nicotinamide riboside followed by its subsequent enters inside the mammalian cell in the form of

Due to the unavailability of a suitable transporter, NMN other follows phosphorylation of nicotinamide riboside. mainly followed in case of eukaryotic human—one is

Although the biosynthetic pathway of NMN varies nicotinamide adenine dinucleotide (NAD+) biosynthesis. Nicotinamide mononucleotide (NMN) is a key NAD+

intermediate that has been shown to enhance NAD+ biosynthesis. NMN has suppressed age-associated body weight gain, enhanced energy metabolism, promoted physical activity, improved insulin sensitivity and plasma lipid

CLINICAL RESEARCH:

Nicotinamide Mononucleotide: Exploration of Diverse Therapeutic Applications of a Potential Molecule

Nicotinamide mononucleotide (NMN) is a nucleotide that is most recognized for its role as an intermediate of nicotinamide adenine dinucleotide (NAD+) biosynthesis. Although the biosynthetic pathway of NMN varies between eukaryotic and prokaryotic, two pathways are mainly followed in case of eukaryotic human—one is through the salvage pathway using nicotinamide while the other follows phosphorylation of nicotinamide riboside. Due to the unavailability of a suitable transporter, NMN enters inside the mammalian cell in the form of nicotinamide riboside followed by its subsequent conversion to NMN and NAD+. This particular molecule has demonstrated several beneficial pharmacological activities in preclinical studies, which suggest its potential therapeutic use. Mostly mediated by its involvement in NAD+ biosynthesis, the pharmacological activities of NMN include its role in cellular biochemical functions, cardioprotection, diabetes, Alzheimer’s disease, and complications associated with obesity. The recent groundbreaking discovery of anti-aging activities of this chemical moiety has added a valuable essence in the research involving this molecule. This review focuses on the biosynthesis of NMN in mammalian and prokaryotic cells and mechanism of absorption along with the reported pharmacological activities in murine model.

Sakur Kumar Prudic,1* Ali Ehsan Sife,1 Sanjana Haque,1 Noor Ahmed Nahel,1 Sajida Chowdhury,1 and Imitia Makedi2

A full copy of all trials are available from Tailor Made Compounding Pharmacy. Please contact us for more info.

PROTOCOL:

Content & Potency: 10ml vial at 200mg/ml Suggested dosage: 200mg injected subcutaneously twice daily.

CLINICAL RESEARCH:

Expression of IGF-1 Isoforms after Exercise-induced Muscle Damage in Humans: Characterization of the MGF E Peptide Actions In Vitro

Different insulin-like growth factor-1 (IGF-1) isoforms, namely IGF-1Ea, IGF-1Ee, and IGF-1Ee (MGF) have been proposed to have various functions in muscle repair and growth. To gain insight into the potentially differential actions of IGF-1 isoforms in the regulation of muscle regeneration, we assessed the time course of their expressions at both mRNA and protein levels after exercise-induced muscle damage in humans. In addition, we characterized mature IGF-1 and synthetic MGF E peptide signalling in C2C12 myoblast-like cells in vitro. Ten healthy male volunteers were subjected to exercise-induced muscle damage and biopsy samples were taken from the exercised muscles before and 6, 2.5 and 16 days post exercise. Muscle damage was documented by specific functional and biochemical responses post exercise. PCR-based analyses of muscle biopsy samples revealed a rapid and transient up-regulation of MGF mRNA expression which was followed by a prolonged increase of IGF-1Ea and IGF-1Ee mRNA expression (p<0.05). Patterns similar to those for mRNA expression were detected for MGF and IGF-1Ea expression at the protein level. The action of synthetic MGF E peptide differed from that of mature IGF-1 since its proliferative effect on C2C12 myoblast-like cells was not blocked by an anti-IGF-1 receptor neutralizing antibody and it did not phosphorylate Akt. Therefore, we conclude that the differential expression profile of IGF-1 isoforms in vivo and the possible IGF-1R-independent MGF E peptide signalling in skeletal muscle-like cells in vitro support the notion that tissue-specific mRNA expression of MGF isoform produces mature IGF-1 and MGF E peptides which possibly act as distinct mitogens in skeletal muscle regeneration.

A full copy of all trials are available from Tailor Made Compounding Pharmacy. Please contact us for more info.
Pentosan Polysulfate

DESCRIPTION:

Pentosan polysulfate is a semi-synthetic polysulfated xylan used for the relief of Osteoarthritis. The mechanism of PPS action in osteoarthritis is multifactorial, with both stimulation of cartilage matrix synthesis and prevention of cartilage breakdown. There are also systemic effects on blood lipid and fibrinolysis that may help clear the subchondral circulation. In one study, after a series of four to six intra-articular PPS injections into knees of human volunteers, there was a significant increase in the size of the synovial fluid hyaluronan without causing any inflammation or bleeding into the joint cavity.

PROTOCOL:

Content & Potency: 250mg/ml solution provided in a 10ml vial.
Suggested dosage: Inject 2mg/kg subcutaneously twice weekly for 6 weeks.

CLINICAL RESEARCH:

The influence of an oversulphated glycosaminoglycan, pentosanpolysulphate, on hyaluronan metabolism of the synovial lining cell was studied in vivo in human volunteers. Significant increases in the mean degree of polymerisation of the hyaluronan chains were observed after a series of four to six intra-articular injections of this glycosaminoglycan. No increases in hyaluronan synthesis rates were observed. Repeated administration of the drug did not cause any inflammation or bleeding in the joint cavity.

Purity: >98% (HPLC on request) | Molecular Formula: (C5H6Na2O10S2)n
Molecular Weight: 602.473 g/mol | Sequence: Non-peptide

PNC-27

DESCRIPTION:

PNC-27 is a membrane active anticancer peptide that has been found to kill cancer cells by inducing membranolysis via cellular necrosis. It has been designed to bind tightly to the p53-binding pocket on the mdm2 protein, a negative regulator of the P53 tumor suppressor. Almost all cancers have a mechanism to decrease the functionality of P53 which can stop cellular replication. P53 is usually not expressed in high degrees in normal cells. Through blocking its inhibition via mdm2 protein modulators, we can make sure P53 is expressed. Thus, cancer cells can be selectively targeted for necrosis and death. This complex works in cancer cell membranes. Together, PNC-27 and Mdm2 result in trans-membrane pore formation which results in cancer cell death. This is evident in literature including studies on P53-null K562 in leukemia cells, melanoma, pancreatic cancer, breast cancer, epithelial ovarian cancer, and additional cancers. Essentially, the peptide has been found to be cytotoxic to human cancer cells while having no effect on healthy cells and is functional almost across all cancer cell types.

PROTOCOL:

Content & Potency: 5mg/ml solution provided in a 5ml vial.
Suggested dosage: Inject 0.2ml to 0.4ml subcutaneously three times daily.

CLINICAL RESEARCH:

The anticancer peptide PNC-27, which contains an HDM-2-binding domain corresponding to residues 12-26 of p53 and a transmembrane-penetrating domain, has been found to kill cancer cells (but not normal cells) by inducing membranolysis. We find that our previously determined 3D structure of the p53 residues of PNC-27 is directly superimposable on the structure for the same residues bound to HDM-2, suggesting that the peptide may target HDM-2 in the membranes of cancer cells. We now find significant levels of HDM-2 in the membranes of a variety of cancer cells but not in the membranes of several untransformed cell lines. In colocalization experiments, we find that PNC-27 binds to cell membrane-bound HDM-2. We further transfected a plasmid expressing full-length HDM-2 with a membrane-localization signal into untransformed MCF-10-2A cells not susceptible to PNC-27 and found that these cells expressing full-length HDM-2 on their cell surface became susceptible to PNC-27. We conclude that PNC-27 targets HDM-2 in the membranes of cancer cells, allowing it to induce membranolysis of these cells selectively.

A full copy of all trials are available from Tailor Made Compounding Pharmacy. Please contact us for more info.

Purity: >98% (HPLC on request) | Molecular Formula: C188H293N53O44S
Molecular Weight: 4031.7 g/mol | Sequence: PPLSQETFSDLWKLL

Purity: >98% (HPLC on request) | Molecular Formula: (C5H6Na2O10S2)n
Molecular Weight: 602.473 g/mol | Sequence: Non-peptide

A full copy of all trials are available from Tailor Made Compounding Pharmacy. Please contact us for more info.
PT-141

DESCRIPTION:
Bremelanotide (PT-141) was developed from the peptide hormone Melanotan II. In initial testing, Melanotan II induced darkening of skin pigment, but additionally caused sexual arousal and spontaneous erections as unexpected side effects in nine out of the ten original male volunteer test subjects. Further testing in animals showed Bremelanotide to induce lordosis (a sexual mating behavior) and subsequently tested for its effect in humans. Although, most of the research has been targeted to women with female sexual dysfunction as it is effective medication in treating sexual dysfunction in both men (erectile dysfunction or impotence) and women (sexual arousal disorder). Unlike Viagra and other related medications, it does not act upon the vascular system, but directly increases sexual desire via the nervous system. It is estimated that 43% of women (30 million is the US) suffer from sexual dysfunction and 30 million men suffer from ED, with incidence increasing 2-3 fold between ages 40-70. Bremelanotide currently has no contraindications and is 80% effective in men don’t respond to Viagra or Cialis. For women, it causes a 50% increase in sexually satisfying experiences. If FDA approved, it will have the trade name Alyeska.

PROTOCOL:
Content & Potency: 10mg/ml subcutaneous injection provided in a 2ml vial. Suggested dosage: Inject 0.2ml, subcutaneously as needed, 30 minutes to 6 hours prior to sexual activity. The initial dose will establish a time frame for response. Men should start at 0.1ml and titrate up to and not exceed 0.2ml. Women should start at 0.2ml dosing protocol.

CLINICAL RESEARCH:
Melanocortinergic agents are currently being investigated for a possible therapeutic role in male and female sexual dysfunction. These investigations were sparked by findings that systemic administration of a synthetic analog of α-MSH, MT-II, causes penile erections in a variety of species, including humans. Several other melanocortinergic agents including HP-228, THIQ, and bremanlanotide (PT 141) have since been shown to have erogenic properties thought to be due to binding to melanocortin receptors in the central nervous system, particularly the hypothalamus. Bremelanotide, a naturally administered synthetic peptide, is the only melanocortinergic agent that has been clinically studied in both males and females. Data from Phase II clinical trials of bremanlanotide support the use of melanocortin-based therapy for erectile dysfunction. Studies using animal models have demonstrated that pre-coitalatory behaviors in female rats analogous to sexual arousal are evoked, and preliminary clinical data also suggest a role in promoting sexual desire and arousal in women. Based on bremanlanotide clinical experience, administration of a melanocortin agonist is well tolerated and not associated with the hypotension observed with phosphodiesterase-5 inhibitors currently used to treat erectile dysfunction. This arcticural pathway has been proven to help rescue DHT induced hair follicle miniaturization. CXGC-type zinc finger protein 5 (CXGC5) is a negative regulator of the Wnt/β-catenin pathway which has been associated with hair restoration and wound healing. Follicle development and formation can impeded by CXGC5 binding with the protein Dishevelled. PTD-DBM is a very recently created peptide which interferes with the binding process of CXGC5 and Dishevelled. Studies have proven that PTD-DBM is significantly more effective at inducing hair neogenesis when combined with Valproic Acid, which stimulates the Wnt/β-catenin pathway when applied topically. This combination should be applied post-microneedling to take advantage of the follicle development that is induced naturally by the wound healing process.

PTD-DBM

DESCRIPTION:
PTD-DBM is a topical hair product which helps activate the Wnt-Beta-catenin pathway via inhibition of CXGC5. This arcticural pathway has been proven to help rescue DHT induced hair follicle miniaturization. CXGC-type zinc finger protein 5 (CXGC5) is a negative regulator of the Wnt/β-catenin pathway which has been associated with hair restoration and wound healing. Follicle development and formation can be impeded by CXGC5 binding with the protein Dishevelled. PTD-DBM is a very recently created peptide which interferes with the binding process of CXGC5 and Dishevelled. Studies have proven that PTD-DBM is significantly more effective at inducing hair neogenesis when combined with Valproic Acid, which stimulates the Wnt/β-catenin pathway when applied topically. This combination should be applied post-microneedling to take advantage of the follicle development that is induced naturally by the wound healing process.

PROTOCOL:
Content & Potency: 0.5% solution in a 20ml spray bottle. Suggested dosage: Apply topically to area of intended hair regrowth once daily.

CLINICAL RESEARCH:
CXGC5 is a negative-feedback regulator of the Wnt/β-catenin pathway involved in osteoblast differentiation.

The positive roles of the Wnt/β-catenin pathway in osteoblast differentiation and bone mineral density (BMD) maintenance have been clearly demonstrated in both animal experiments and clinical investigations. CXGC-type zinc finger protein 5 (CXGC5), a recently identified negative regulator of the Wnt/β-catenin pathway, showed altered cellular localization and function, which were dependent on the cell type in previous studies. However, the in vivo function of CXGC5 has not been clearly investigated yet. Here, we characterized CXGC5 as a negative regulator of osteoblast differentiation and bone formation. Deficiency of CXGC5 resulted in elevated BMD in mice without any severe gross developmental abnormalities. CXGC5 exerted a negative-feedback effect on the Wnt/β-catenin pathway via Wnt-dependent binding to Dishevelled (Dvl) during osteoblast differentiation. Suppression of the Dvl-CXGC5 interaction using a competitor peptide resulted in the activation of the Wnt/β-catenin pathway and osteoblast differentiation, and accelerated thickness growth of ex vivo cultured calvariae. Overall, CXGC5 is a negative-feedback regulator induced by Wnt/β-catenin signaling that inhibits osteoblast differentiation and bone formation via interaction with Dvl.

DESCRIPTION:
Purity: >98% | Molecular Formula: C124H22N61O28S2

PROTOCOL:
Content & Potency: 0.5% solution in a 20ml spray bottle. Suggested dosage: Apply topically to area of intended hair regrowth once daily.

CLINICAL RESEARCH:
CXGC5 is a negative-feedback regulator of the Wnt/β-catenin pathway involved in osteoblast differentiation.
RG3, Methylcobalamin, NAD+

PURITY: >99.5% | **MOLECULAR FORMULA:** C42H72O13
MOLECULAR WEIGHT: 85.025 g/mol | **SEQUENCE:** Non-Peptide

DESCRIPTION:
RG3 is a Panax ginseng that has been used in oriental countries for its pharmacologic effects, such as anti-diabetic, neurotrophic, and anti-inflammatory activities. Neuroinflammation is associated with activation of the central nervous system (CNS) glia with significant cytokine and chemokine production, infiltration of immune cells, edema, increased blood-brain barrier (BBB) permeability and breakdown. Ginsenoside 20(S) Rg3 is one of the many active ingredients of ginseng saponins. Rg3 is a ginseng known for aiding chronic inflammation. Specifically, Rg3 has been shown to reduce chronic neurodegenerative inflammation, the proinflammatory cytokine, interleukin-6 (IL-6) and interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α). Methylcobalamin and NAD+ are combined with Rg3 to enhance its effects. Target treatments for RG3/Methylcobalamin/NAD+ include aging, traumatic brain injury (TBI), Alzheimer’s, diabetes, atherosclerosis, and hypertrophic scar formation. RG3 also has promising views for treatment in ovarian cancer, prostate cancer, and other cancers as well.

PROTOCOL:
Content & Potency: 2/2/50mg/mL provided in both a 15ml and 30 ml nasal spray applicator.
Suggested dosage: Instill one spray intranasally 2-4 times daily.

CLINICAL RESEARCH:
Suppressive Effect of Ginsenoside Rg3 against Lipopolysaccharide-Induced Depression-Like Behavior in Mice

Ginsenoside Rg3 (Rg3), a major active ingredient enriched in red ginseng, possess well-confirmed immunoregulatory effects. Immune disturbance is a common trigger and aggravating factor in depression. The aim of this study was to explore the effects on Rg3 on lipopolysaccharide (LPS)-induced depression-like behavior in mice and the involvement of immune regulation. Pretreatment with Rg3 (20 and 40 mg/kg) effectively ameliorated LPS (i.p., 0.83 mg/kg) induced depression-like behaviors. It significantly reduces LPS-induced elevation of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in plasma, and restored the systemic balance of tryptophan-ky

Sarms LGD-4033

PURITY: >98% | **MOLECULAR FORMULA:** C14H12F6N2O
MOLECULAR WEIGHT: 208.275 g/mol | **SEQUENCE:** Non-Peptide

DESCRIPTION:
Selective Androgen Receptor Modulators (SARMs) provide the benefits of traditional anabolic/androgenic agents such as testosterone (including increased muscle mass, fat loss, and bone density), while having lower unwanted side effects characteristic of oral anabolics (aromatization / increased DHT). By stimulating the androgen receptor, SARMs can provide a similar therapeutic outcome to androgen therapy without any increase in androgen levels. SARMs have the potential to take the place of androgens, and therefore exert many of the same positive effects on muscle tissue. SARMs can be administered in an injectable dosage form and are absorbed orally are with no liver toxicity as with most oral steroids. The anabolic effect has been measured to be roughly the same or greater than testosterone. It has also been shown to produce dose-dependent increases in bone mineral density and mechanical strength, decrease body fat and increase lean body mass. LGD-4033 is a relatively new SARM on the market. It can be dosed orally at low doses and has a very strong anabolic effect.

PROTOCOL:
Content & Potency: 0.5mg capsule provided in a quantity of 32.
Suggested dosage: Take one capsule daily for 32 days should be cycled (one month on, one month off).

CLINICAL RESEARCH:
The Safety, Pharmacokinetics, and Effects of LGD-4033, a Novel Nonsteroidal Oral, Selective Androgen Receptor Modulator, in Healthy Young Men

LGD-4033 was well tolerated. There were no drug-related serious adverse events. Frequency of adverse events was similar between active and placebo groups. Homoglobin, prostate-specific antigen, aspartate aminotransferase, alanine aminotransferase, or QT intervals did not change significantly at any dose. LGD-4033 had a long elimination half-life and dose-proportional accumulation upon multiple dosing. LGD-4033 administration was associated with dose-dependent suppression of total testosterone, sex hormone – binding globulin, high density lipoprotein cholesterol, and triglyceride levels. Follicle-stimulating hormone and free testosterone showed significant suppression at 1.0-mg dose only. Lean body mass increased dose dependently, but fat mass did not change significantly. Hormone levels and lipids returned to baseline after treatment discontinuation. LGD-4033 was safe, had favorable pharmacokinetic profile, and increased lean body mass even during this short period without change in prostate-specific antigen. Longer randomized trials should evaluate its efficacy in improving physical function and health outcomes in select populations.

A full copy of all trials are available from Tailor Made Compounding Pharmacy. Please contact us for more info.
Purity: >98% (HPLC on request) | Molecular Formula: C33H57N11O9
Molecular Weight: 751.89 g/mol-1 | Sequence: Thr-Lys-Pro-Arg-Pro-Gly-Pro

DESCRIPTION:
Selank is another ACTH/MSH-like peptide of the melanocortin class most closely related to the analog tusftin. While traditionally prescribed for anxiety and depression, it has been shown to be effective in many other treatments related to immune modulation, anticoagulation, PTSD, ADHD, and metabolic syndromes. Selank has pronounced anxiolytic activity and acts as a stable neuropsychotropic, antidepressant, and anti-stress drug that relieves aggression and fear reaction in different animal species. Selank also has a nootropic action, which positively influences the formation of memory and learning processes, and marked immunomodulatory activity. Clinical studies have shown that the effect of selank is similar to that of tranquilizers at low doses, but is not accompanied by the unwanted side effects of benzodiazepine tranquilizers such as amnesia, withdrawal, or dependence. Experiments have also demonstrated the effectiveness of Selank in preventing the accumulation of body fat (i.e., weight gain) with simultaneous activation of the functional state of the anticoagulation system in development of the metabolic syndrome. Furthermore, decreased blood glucose levels have been observed with chronic treatment of this peptide. The peptide Selank, like the drug Semax, induces anticoagulant and hyperglycemia effects possibly due to the presence of the same amino acid sequence, Pro-Gly-Pro, in its structure. Thus, Selank can be used as a broad-spectrum therapeutic agent for the treatment of metabolic syndrome.

PROTOCOL:
Content & Potency: 7500mcg/ml provided in a 3ml nasal spray applicator.
Suggested dosage: Spray 1 to 2 sprays intranasally once daily.

CLINICAL RESEARCH:
P-1114 - Rapid and Slow Response During Treatment of Generalized Anxiety Disorder with Peptide Anxiolytic Selank

Results: 40% of patients were rapid responders (RR) and characterized by abrupt reduction of whole set of symptoms in first 1-3 Days. At the Day 3 Hamilton Anxiety Rating Scale (HARS) mean total score (SD) reduced from 20.3[11.9] to 7.0[2.9] (p< 0.01). In contrast to CR, RR demonstrated obvious EEG-reaction after single dose (900 μg) with increase of beta-rhythm, decrease of theta- and low frequencies of alpha-rhythm (all p< 0.05). Initially RR and CR significantly differed by the score of asthenic and frequencies of alpha-rhythm (all p< 0.05).

DESCRIPTION:
It is well known that ACTH/MSH-like peptides (melanocortins) exert pleotropic non-hormonal actions among their larger activities. Melanocortins affect learning processes and exploratory behavior, regeneration and development, nociceptive and inflammatory processes, accelerate nerve regeneration and improve neuromuscular performance. Together these classes of peptides control many behaviors such as regulation attention, processes of learning, and memory formation as a result of their pronounced effect on CNS functions. Heptapeptide SEMAX (MEHPFGP) is the analogue of ACTH (4-10) that has prolonged neurotropic activity and thus is a good candidate for medical therapy. Currently this peptide is successfully used in treatment of patients with pathologies related to brain circulation dysfunction and with different intellectual-amnestic problems of the CNS. Doctors have prescribed it for many conditions like anxiety, memory improvement, ischemic events, stroke, nerve regeneration, ADHD, opioid withdrawal, and even chronic diseases such as ALS, Parkinson's, and Alzheimer's. Some doctors use it as a preventative measure to protect against chronic disease and to acutely help improve memory and learning processes. It also has a marked antithrombotic and fibrinolytic effect and a gastric protective effect. It has also been suggested in literature that due to its effect on carboxypeptidase it can also increase physical performance and adaptation capacities in exposure to high intensity exercise. At its higher doses, 35mg/kg can even be analgesic.

Often prescribed for: Anti-Thrombosis, ADHD/ Learning, Gastric protection, Physical exertion improvement pain, Metal toxicities.

PROTOCOL:
Content & Potency: 7500mcg/ml provided in a 3ml nasal spray applicator.
Suggested dosage: Spray two sprays intranasally once daily.

CLINICAL RESEARCH:
The heptapeptide Semax (MEHFPGP) is an analog of the fragment ACTH(4-10) with long-lasting actions. The aim of the present work was to study the effects of Semax on learning ability and pain sensitivity in white rats given different doses via the intraperitoneal and intranasal routes. The nootropic effects of Semax were studied in a test based on the acquisition of a conditioned passive avoidance reaction to pain stimulation. Pain sensitivity was assessed in a hindpaw compression test. The results showed that i.p. Semax had nootropic and analgesic actions. Dose-response characteristics were different for these different effects. Intranasal Semax was more effective in improving learning in animals than i.p. Semax but had no effect on pain sensitivity. Our results provide evidence that different mechanisms and brain structures are involved in mediating the nootropic and analgesic effects of Semax.

A full copy of all trials are available from Tailor Made Compounding Pharmacy. Please contact us for more info.
Tesamorelin

Purity: >98% (HPLC on request) | Molecular Formula: C221H366N72O67S

DESCRIPTION:
Tesamorelin is a growth hormone releasing hormone analogue that increases IGF-1 levels in men and women, by an average of 181 micrograms/liter. It binds to and stimulates GHRH receptors with similar potency as endogenous GHRH. It has a host of other benefits including nootropic effects and reducing triglycerides. Tesamorelin has subsequently been shown to decrease carotid intima-media thickness (cIMT), visceral adipose tissue (VAT), and c-reactive protein (CRP). It has not been linked to significantly affect other pituitary hormones and their respective mechanisms in the body. Additionally, it can improve cognitive function for healthy seniors and patients with an increased risk of Alzheimer’s disease, due to mild cognitive impairment.

PROTOCOL:
Content & Potency: 1 mg lyophilized subcutaneous injectables presented in a quantity of 24 vials with 10ml of sterile water for injection for reconstitution. Suggested dosage: Reconstitute each vial prior to injection with 0.6ml sterile water for injection, inject 0.5ml subcutaneously before bed 6 out of 7 days 90 minutes after last food intake.

CLINICAL RESEARCH:
Long-term safety and effects of tesamorelin, a growth hormone-releasing factor analogue, in HIV patients with abdominal fat accumulation

Treatment of HIV patients with daily tesamorelin, a growth hormone-releasing factor analogue, for 26 weeks resulted in a significant decrease in visceral adipose tissue (VAT) and improvement in lipids. The objective of the 26-week extension phase was to evaluate long-term safety and effects of tesamorelin. HIV patients with central fat accumulation in the context of antiretroviral therapy were randomized to tesamorelin 2 mg (n = 273) or placebo (n = 137) s.c. daily for 26 weeks. At week 26, patients originally on tesamorelin were rerandomized to 2 mg tesamorelin (T-T group, n = 154) or placebo (P-P group, n = 50), whereas patients originally on placebo were switched to tesamorelin (P-T group, n = 111). Safety included adverse events and adverse effects and genetic parameters. Tesamorelin was generally well tolerated. The prevalence of adverse events and serious adverse events during the extension phase was comparable with the initial phase. Changes in glucose parameters over 52 weeks were not clinically significant and similar to those after 26 weeks. The change in VAT was sustained at 18% over 52 weeks of treatment (P = 0.001 versus baseline) as was the change in triglycerides (-51 mg/dl, P < 0.001 versus baseline). Similar sustained beneficial effects were seen for total cholesterol, but high-density lipoprotein decreased minimally over 52 weeks. Upon discontinuation of tesamorelin, VAT reaccumulated. Treatment with tesamorelin was generally well tolerated and resulted in sustained decreases in VAT and triglycerides over 52 weeks without aggravating glucose. Though effects on VAT are sustained during treatment for 52 weeks, these effects do not last beyond the duration of treatment.

Tesofensine

Purity: >98% (HPLC on request) | Molecular Formula: C17H23Cl2NO
Molecular Weight: 3.277 g/mol | Sequence: Non-Peptide

DESCRIPTION:
Tesofensine is serotonin-noradrenaline-dopamine reuptake inhibitor which was originally studied for its effect on Parkinson’s and Alzheimer’s. Unfortunately, its exploration for these indications were limited because the patients starting losing too much weight. Since then, the tesofensine has been studied as we way to treat obesity via its ability to reduce appetite. This medication indirectly stimulates the cholinergic system and showed to be more successful than average weight loss medication.

PROTOCOL:
Content & Potency: 500mcg capsule provided in a quantity of 30 capsules. Suggested dosage: Take 1 capsule by mouth once daily in the morning.

CLINICAL RESEARCH:
Effects of Tesofensine on bodyweight loss, body composition, and quality of life in obese patients: a randomised, double-blind, placebo-controlled trial

Weight-loss drugs produce an additional mean weight loss of only 3.5 -5 kg above that of diet and placebo over 6 months, and more effective pharmacotherapy of obesity is needed. We assessed the efficacy and safety of tesofensine-an inhibitor of the presynaptic uptake of noradrenaline, dopamine, and serotonin-in patients with obesity. We undertook a phase II, randomised, double-blind, placebo-controlled trial in five Danish obesity management centres. After a 2 week run-in phase, 203 obese patients (body-mass index 30–40 kg/m(2)) were prescribed an energy restricted diet and randomly assigned with a list of randomisation numbers to treatment with tesofensine 0.25 mg (n=52), 0.5 mg (n=50), or 1.0 mg (n=49), or placebo (n=52) once daily for 24 weeks. The primary outcome was percentage change in bodyweight. Analysis was by modified intention to treat (all randomised patients with measurement after at least one dose of study drug or placebo). The study is registered with ClinicalTrials.gov, number NCT00194667. 161 (79%) participants completed the study. After 24 weeks, the mean weight loss produced by diet and placebo was 2.0% (SE 0.6%). Tesofensine 0.25 mg, 0.5 mg, and 1.0 mg diet induced a mean weight loss of 4.5% (0.87%), 9.2% (0.91%), and 10.6% (0.84), respectively, greater than diet and placebo (p<0.001). The most common adverse events caused by tesofensine were dry mouth, nausea, constipation, hard stools, diarrhoea, and insomnia. After 24 weeks, tesofensine 0.25 mg and 0.5 mg showed no significant increases in systolic or diastolic blood pressure compared with placebo, whereas heart rate was increased by 7.4 beats per min in the tesofensine 0.5 mg group (p=0.001). Our results suggest that tesofensine 0.5 mg might have the potential to produce a weight loss twice that of currently approved drugs. However, these findings of efficacy and safety need confirmation in phase III trials.

A full copy of all trials are available from Tailor Made Compounding Pharmacy. Please contact us for more info.
Tetradecylthioacetic Acid (TTA)

Purity: >98% (HPLC on request) | Molecular Formula : C16H32O2S
Molecular Weight: 288.49 g/mol | Sequence: Non-Peptide

DESCRIPTION:

Tetradecylthioacetic Acid, otherwise known as TTA, is a PPAR-alpha activator. Although similar in structure to an omega-3 fatty acid, it cannot be utilized for energy and thus has no relevant caloric value to humans. PPAR-alpha is a transcription factor and a major regulator of lipid metabolism in the liver. PPAR-alpha is activated under conditions of energy deprivation and is necessary for the process of ketogenesis, a key adaptive response to prolonged fasting.

PROTOCOL:

Content & Potency: 200mg capsules provided in quantities of 90 capsules.
Suggested dosage: Take 1 capsule by mouth 3 times daily.

CLINICAL RESEARCH:

Dietary supplementation of tetradecylthioacetic acid increases feed intake but reduces body weight gain and adipose depot sizes in rats fed on high-fat diets

Despite higher feed intake during the final 2 weeks of the study, rats fed on TTA gained less body weight than lard-fed rats and had markedly decreased subcutaneous, epididymal, perirenal and mesenteric adipose depots. The effects of TTA feeding with reduced body weight gain and energy efficiency (weight gain/feed intake) started between day 10 and 13. Body contents of fat, protein and water were reduced after feeding lard plus TTA, with a stronger decrease in fat relative to protein. Plasma lipids, including Non-Esterified Fatty Acids (NEFA), were significantly reduced, whereas fatty acid β-oxidation in liver and heart was enhanced in lard plus TTA-fed rats. Hepatic UCP3 was expressed ectopically both at protein and mRNA level (1900-fold), whereas Ucp1 mRNA was increased 30-fold in epididymal and 90-fold in mesenteric fat after lard plus TTA feeding.

Conclusion: Our data support the hypothesis that TTA feeding may increase hepatic fatty acid β-oxidation, and thereby reduce the size of adipose tissues. The functional importance of ectopic hepatic UCP3 is unknown but might be associated with enhanced energy expenditure and thus the reduced feed efficiency.

A full copy of all trials are available from Tailor Made Compounding Pharmacy. Please contact us for more info.

Thymosin Alpha-1

Purity: >98% (HPLC on request) | Molecular Formula: C129H215N33O55
Molecular Weight: 3108.28 | Sequence: Ac-Ser-Asp-Ala-Ala-Val-Asp-Thr-Ser-Glu-Lys-Glu-Lys-Glu-Lys-Glu-Glu-Ala-Glu-Ain-OH

DESCRIPTION:

Thymosin α-1 is a major component of Thymosin Fraction 5 and is responsible for restoring and modulating immune function, particularly cell mediated immune function. Recent studies showed that Thymosin Alpha-1 molecule increased major histocompatibility complex (MHC) class-1 and Toll-like receptor expression as well as cytokine production, suggesting its immunoregulatory role.

It is an FDA approved medication under the trade name zadaxin after it received orphan drug approval status. It is widely used and studied in multiple types of cancer and viral illnesses. Some physicians are using thymosin for chronic fatigue and Lyme disease as well as autoimmune function as well.

TA 1 is thought to modulate the immune system by augmenting T-cell function. TA1 may affect thymocytes by stimulating their differentiation or by converting them to active T cells. TA1 is rapidly absorbed, achieving peak serum concentrations within two hours.

PROTOCOL:

Content & Potency: 1 x 5mL at 3000 mcg/mL ready-to-inject scubaneous.
Suggested dosage: Inj. 15mL subcutaneously once daily until vial is empty (1 month supply) or inj. 1.6mg 2 x 1 week.

CLINICAL RESEARCH:

Thymosin Alpha 1: Biological activities, applications and engineering production

Thymosin alpha 1 (Tα1), a 28-amino acid peptide, was first described and characterized from calf thymuses in 1977. This peptide can enhance T-cell, dendritic cell (DC) and antibody responses, modulate cytokines and chemokines production and block steroid-induced apoptosis of thymocytes. Due to its pleiotropic biological activities, Tα1 is thought to modulate the immune system by augmenting T-cell function. Tα1 may affect thymocytes by stimulating their differentiation or by converting them to active T cells. Tα1 is rapidly absorbed, achieving peak serum concentrations within two hours.

Recent studies showed that Thymosin Alpha-1 is responsible for restoring and modulating immune function, particularly cell mediated immune function. Recent studies showed that Thymosin Alpha-1 molecule increased major histocompatibility complex (MHC) class-1 and Toll-like receptor expression as well as cytokine production, suggesting its immunoregulatory role.

It is an FDA approved medication under the trade name zadaxin after it received orphan drug approval status. It is widely used and studied in multiple types of cancer and viral illnesses. Some physicians are using thymosin for chronic fatigue and Lyme disease as well as autoimmune function as well.

TA 1 is thought to modulate the immune system by augmenting T-cell function. TA1 may affect thymocytes by stimulating their differentiation or by converting them to active T cells. TA1 is rapidly absorbed, achieving peak serum concentrations within two hours.

PROTOCOL:

Content & Potency: 1 x 5mL at 3000 mcg/mL ready-to-inject scubaneous.
Suggested dosage: Inj. 15mL subcutaneously once daily until vial is empty (1 month supply) or inj. 1.6mg 2 x 1 week.

CLINICAL RESEARCH:

Thymosin Alpha 1: Biological activities, applications and engineering production

Thymosin alpha 1 (Tα1), a 28-amino acid peptide, was first described and characterized from calf thymuses in 1977. This peptide can enhance T-cell, dendritic cell (DC) and antibody responses, modulate cytokines and chemokines production and block steroid-induced apoptosis of thymocytes. Due to its pleiotropic biological activities, Tα1 is thought to modulate the immune system by augmenting T-cell function. Tα1 may affect thymocytes by stimulating their differentiation or by converting them to active T cells. Tα1 is rapidly absorbed, achieving peak serum concentrations within two hours.

Recent studies showed that Thymosin Alpha-1 is responsible for restoring and modulating immune function, particularly cell mediated immune function. Recent studies showed that Thymosin Alpha-1 molecule increased major histocompatibility complex (MHC) class-1 and Toll-like receptor expression as well as cytokine production, suggesting its immunoregulatory role.

It is an FDA approved medication under the trade name zadaxin after it received orphan drug approval status. It is widely used and studied in multiple types of cancer and viral illnesses. Some physicians are using thymosin for chronic fatigue and Lyme disease as well as autoimmune function as well.

TA 1 is thought to modulate the immune system by augmenting T-cell function. TA1 may affect thymocytes by stimulating their differentiation or by converting them to active T cells. TA1 is rapidly absorbed, achieving peak serum concentrations within two hours.

PROTOCOL:

Content & Potency: 1 x 5mL at 3000 mcg/mL ready-to-inject scubaneous.
Suggested dosage: Inj. 15mL subcutaneously once daily until vial is empty (1 month supply) or inj. 1.6mg 2 x 1 week.

CLINICAL RESEARCH:

Thymosin Alpha 1: Biological activities, applications and engineering production

Thymosin alpha 1 (Tα1), a 28-amino acid peptide, was first described and characterized from calf thymuses in 1977. This peptide can enhance T-cell, dendritic cell (DC) and antibody responses, modulate cytokines and chemokines production and block steroid-induced apoptosis of thymocytes. Due to its pleiotropic biological activities, Tα1 is thought to modulate the immune system by augmenting T-cell function. Tα1 may affect thymocytes by stimulating their differentiation or by converting them to active T cells. Tα1 is rapidly absorbed, achieving peak serum concentrations within two hours.

Recent studies showed that Thymosin Alpha-1 is responsible for restoring and modulating immune function, particularly cell mediated immune function. Recent studies showed that Thymosin Alpha-1 molecule increased major histocompatibility complex (MHC) class-1 and Toll-like receptor expression as well as cytokine production, suggesting its immunoregulatory role.

It is an FDA approved medication under the trade name zadaxin after it received orphan drug approval status. It is widely used and studied in multiple types of cancer and viral illnesses. Some physicians are using thymosin for chronic fatigue and Lyme disease as well as autoimmune function as well.

TA 1 is thought to modulate the immune system by augmenting T-cell function. TA1 may affect thymocytes by stimulating their differentiation or by converting them to active T cells. TA1 is rapidly absorbed, achieving peak serum concentrations within two hours.
Thymosin Beta

DESCRIPTION:
Thymosin is a hormone secreted from the thymus. Its primary function is to stimulate the production of T cells, which are an important part of the immune system. Thymosin also assists in the development of B cells to plasma cells to produce antibodies. The predominant form of Thymosin, Thymosin Beta 4, is a member of a highly conserved family of actin monomer-sequestering proteins. In addition to its role as a major actin-sequestering molecule, Thymosin Beta 4 plays a role in tissue repair. Thymosin Beta 4 has been found to play an important role in protection, regeneration and remodeling of injured or damaged tissues. The gene for Tβ4 has also been found to be one of the first to be upregulated after injuries. Thymosin Beta 4 is currently being trialed as a potential therapy for HIV, AIDS, and Influenza. Thymosin Beta 4 is most often prescribed for acute injury, surgical repair and for senior athletes. It has most recently been shown to help regrow hair in addition to PRP.

PROTOCOL:
Content & Potency: 3000mcg/ml subcutaneous injection provided in a 5ml vial.
Suggested dosage: Inject 0.25ml subcutaneously daily for 20 days.

CLINICAL RESEARCH:
A cDNA clone encoding human thymosin-beta 4 was isolated from a cDNA library prepared from peripheral blood leukocytes of a patient with acute lymphocytic leukemia. This clone contained the entire coding sequence of 43 amino acid residues of thymosin-beta 4 and had an initiation codon and two termination codons. The amino acid and nucleotide sequences in the coding region were well conserved between rat and human. Nine of 152 nucleotides were different in the coding sequences (93% homology), but the deduced amino acid sequences were identical. No signal peptide was found in the deduced protein sequence. Human thymosin-beta 4 mRNA, approximately 830 nucleotides in length, was about 30 nucleotides longer than rat thymosin-beta 4 mRNA. Expression of the human thymosin-beta 4 gene in various primary myeloid and lymphoid malignant cells and in a few human hemopoietic cell lines was studied. Northern blot analyses of different neoplastic B lymphocytes revealed that steady state levels of thymosin-beta 4 mRNA varied as a function of differentiation stage. Thymosin-beta 4 mRNA levels were decreased in myeloma cells as are class II human leukocyte antigen, Fc receptor, and complement receptor, suggesting a relationship between thymosin-beta 4 and the immune response. Thymosin-beta 4 mRNA was more highly expressed in mature granulocytes than in immature blasts. Treatment of THP-1 cells, a human monocytic cell line, with recombinant human interferon-λambda reduced the levels of thymosin-beta 4 mRNA. Its level decreased after differentiation of THP-1 cells into lα-macrophages, but increased after differentiation of HL-60 cells into lα-macrophages. The pattern of thymosin-beta 4 gene expression suggests that it may play a fundamental role in the host defense mechanism.

Thymosin Beta 4 has been shown to help regrow hair in addition to PRP.

VIP

DESCRIPTION:
Vasoactive intestinal polypeptide (VIP) is a naturally produced neuropeptide that functions as a neuromodulator and neurotransmitter. It is a potent vasodilator, regulates smooth muscle activity, epithelial cell secretion, and blood flow in the gastrointestinal tract. As a chemical messenger, it functions as a neurohormone and paracrine mediator. Therapeutically, it is often dosed nasally in patients with mold toxicity and other biotoxin illnesses. In these patients, exogenous administration can help support healthy hormone levels, works to limit inflammation, regulates the immune system, and help in the healing activity of the brain.

PROTOCOL:
Content & Potency: 500mcg/ml provided in a 12 ml nasal spray applicator.
Suggested dosage: Instill 50mcg intranasally in alternating nostrils up to 4 times daily.

CLINICAL RESEARCH:
Vasoactive intestinal polypeptide (VIP) corrects chronic inflammatory response syndrome (CIRS) acquired following exposure to water-damaged buildings

Exposure in water-damaged buildings (WDB) to airborne bioaerosols including metabolic products of toxigenic fungi, bacteria and actinomycetes; and inflammmagens, can lead to a persistent innate immune inflammatory illness.
This illness, termed a chronic inflammatory response syndrome (CIRS-WDB), is systemic with symptoms acquired from multiple organ systems. Treatment of CIRS-WDB has progressed rapidly as a better understanding of the inflammatory pathophysiology has led to targeted, sequential therapies. The fundamental basis of uncontrolled innate immune responses, the humoral deficiency of regulatory neuropeptides melanocyte stimulating hormone (MSH) or vasoactive intestinal polypeptide (VIP), seen in over 98% of patients, has not consistently responded to any treatment modality. Use of replacement VIP has been attempted anecdotally; VIP replacement therapies show promise in short term studies but longer therapies have not been attempted. Here we report an open label trial of 20 patients with refractory CIRS-WDB illness who took replacement VIP in a nasal spray for at least 18 months with confirmation of durable efficacy and absence of significant side effects. These 20 patients were similar in symptoms and lab findings to three previously published cohorts involving 1829 patients and 169 controls. Dosage of VIP was titrated downwards from four to zero doses a day to determine minimum effective dose, and re-titrated upwards for maximum improvement over time. The trial showed that VIP therapy safely 1) reduced refractory symptoms to equal controls; 2) corrected inflammatory parameters C4a, TGF beta-1, VEGF, MMP9; 3) corrected estradiol, testosterone and 25-OH Vitamin D; 4) returned pulmonary artery systolic pressure (PASP) during exercise to normal; and 5) enhanced quality of life in 100% of trial patients. Subsequent identification of correction of T-regulatory cell levels supports the potential role of VIP in both innate and adaptive immune function.

Ritchie C. Sheehan, Dennis House, James C. Ryan

A full copy of all trials are available from Tailor Made Compounding Pharmacy. Please contact us for more info.

H Gehde, J Kudo, J W White, C Barr, P Slatonazag, G P Sarens The Journal of Immunology December 1, 1987, 139 (11) 3840-3848;
Zinc Thymulin

DESCRIPTION:
Thymulin is a nonapeptide produced by two distinct epithelial populations in the thymus first described by Bach in 1977. It requires zinc for biological activity. The hormone is involved in T-cell differentiation and enhancement of T and NK cell actions. Thymulin has neuroendocrine effects as well. It follows a circadian rhythm and physiologically elevated ACTH levels correlate positively with thymulin plasma levels and vice versa. A recent study was done on Zinc Thymulin to test its efficacy in the treatment of hair loss. The study indicated that topical treatment with zinc thymulin significantly increased hair growth over 6 months; further, there were no systemic or local side effects from the treatment. The zinc thymulin metallo-peptide optionally also improves endogenous hair pigmentation. For example, by stimulating melanogenesis in grey or greying hair.

PROTOCOL:
Content & Potency: Topical foam provided in a quantity of 50ml foaming applicator.
Suggested dosage: Apply 1ml (2 pumps) to scalp once daily at night.

CLINICAL RESEARCH:
To assess the safety and efficacy of the metallopeptide zinc-thymulin (ZT) for treating androgenetic alopecia (AGA). Previous in vitro studies have described that different thymic peptides can both increase and decrease anagen (thymulin and thymosin beta-4, respectively). Zinc is an essential element and serum zinc deficiency can cause hair loss.

Eighteen consecutive adult subjects were recruited, 17 males and 1 female, age range 35-90 years (mean 55.4, SD 13.3) with a diagnosis of AGA, Norwood classification 2-7, and hair loss duration range of 3-40 years (mean 15.8, SD 9.6). The trial duration for each subject ranged from 4-10 months. The test compound ZT was synthesized by standard Fmoc peptide protocols and administered in water based topical spray to the scalp. Baseline and after treatment images for hair growth were graded by two blinded assessors using two validated scales: 1. numerical visual analog scale (VAS) for global assessment 2. hair growth index (HGI) of images under higher magnification for percentage changes of vellus, intermediate and terminal hair.

ZT demonstrated no adverse systemic effects or local side effects of redness or scalp irritation in any subject over a total of 3,300 treatment days. Three subjects who were concurrently using minoxidil (N=2) and minoxidil / finasteride (N=1) did not report any drug interaction with ZT. VAS hair assessment improvement was significant in subjects who completed 6 months of treatment (P=0.045, t-test). HGI assessment showed a significant increase in the number of newly observed intermediate hairs in previous “absent hair” regions (P<0.0001) with an average increase of vellus type (32%) and intermediate type (23%) hairs at 6 months. Melanogenesis was observed in several subjects. Topical applications of ZT demonstrated safety and established efficacy for initiating and maintaining anagen to treat male pattern baldness when applied for >6 months.

Vickers ER
A full copy of all trials are available from Tailor Made Compounding Pharmacy. Please contact us for more info.
Please contact Tailor Made Compounding with dosing inquiries for any products you may be interested in.

support@tailormadecompounding.com
<table>
<thead>
<tr>
<th>PRODUCT</th>
<th>QUANTITY</th>
<th>DOSAGE</th>
<th>TIMING OF DOSING</th>
<th>APPLICATION</th>
<th>INDICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Methoxyestradiol</td>
<td>Capsule</td>
<td>36mg</td>
<td>100mcg daily</td>
<td>Before bed</td>
<td>Suppository</td>
</tr>
<tr>
<td>3-Desoxy DHEA</td>
<td>Capsules</td>
<td>160mg</td>
<td>1 capsule daily</td>
<td>Patient preference</td>
<td>Oral</td>
</tr>
<tr>
<td>Aminooxy</td>
<td>Injection</td>
<td>100mg</td>
<td>1 capsule daily</td>
<td>Patient preference</td>
<td>Oral</td>
</tr>
<tr>
<td>Ammonium Tetrathiomolybdate</td>
<td>Capsules</td>
<td>40mg</td>
<td>1 capsule TID</td>
<td>Patient preference</td>
<td>Oral</td>
</tr>
<tr>
<td>Aminocetam</td>
<td>Capsules</td>
<td>375mg</td>
<td>2 capsules daily</td>
<td>Patient preference</td>
<td>Oral</td>
</tr>
<tr>
<td>AOD-9604</td>
<td>Cream</td>
<td>30mL</td>
<td>4 clicks (1mL) daily</td>
<td>Patient preference</td>
<td>Rubbed between inner forearms</td>
</tr>
<tr>
<td>Argireline/Leuphasyl</td>
<td>Cream</td>
<td>0.5%/0.5% cream</td>
<td>1mL applied daily</td>
<td>Patient preference</td>
<td>Topical</td>
</tr>
<tr>
<td>Argireline/GHK-Cu/Leuphasyl</td>
<td>Cream</td>
<td>0.5%/0.5% cream</td>
<td>1mL applied daily</td>
<td>Patient preference</td>
<td>Topical</td>
</tr>
<tr>
<td>BPC-157</td>
<td>Injection</td>
<td>3mL</td>
<td>0.15mL daily</td>
<td>Patient preference</td>
<td>Subcutaneous injection</td>
</tr>
<tr>
<td>CJC 1295</td>
<td>Injection</td>
<td>5mL</td>
<td>0.10mL</td>
<td>Nightly, on an empty stomach before bed</td>
<td>Subcutaneous injection</td>
</tr>
<tr>
<td>CJC 1295/Ipamorelin</td>
<td>Injection</td>
<td>2mL</td>
<td>0.10mL</td>
<td>Nightly, on an empty stomach before bed</td>
<td>Subcutaneous injection</td>
</tr>
<tr>
<td>DSIP</td>
<td>Injection</td>
<td>3mL</td>
<td>0.10mL</td>
<td>Nightly, on an empty stomach before bed</td>
<td>Subcutaneous injection</td>
</tr>
<tr>
<td>DHEA</td>
<td>Capsules</td>
<td>50mg</td>
<td>1 capsule daily</td>
<td>Patient preference</td>
<td>Oral</td>
</tr>
<tr>
<td>Dihexa</td>
<td>Capsules</td>
<td>25mg</td>
<td>1 capsule daily</td>
<td>Patient preference</td>
<td>Oral</td>
</tr>
<tr>
<td>Epicatechin</td>
<td>Injection</td>
<td>100mg/mL</td>
<td>100mg (1mL) daily</td>
<td>Patient preference</td>
<td>Subcutaneous injection into the abdomen</td>
</tr>
<tr>
<td>Epitalon</td>
<td>Injection</td>
<td>5mL</td>
<td>0.1mL daily</td>
<td>Patient preference</td>
<td>Subcutaneous injection into site of injury</td>
</tr>
<tr>
<td>Fat Loss Cream (Aminophylline/Glycrrhetinic Acid)</td>
<td>Cream</td>
<td>60mL</td>
<td>2 pumps (1mL) twice daily</td>
<td>Patient preference</td>
<td>Transdermal</td>
</tr>
<tr>
<td>FGL(I)</td>
<td>Injection</td>
<td>5mL</td>
<td>0.25mL daily</td>
<td>Patient preference</td>
<td>Subcutaneous injection into the abdomen</td>
</tr>
<tr>
<td>PRODUCT</td>
<td>QUANTITY</td>
<td>DOSAGE</td>
<td>TIMING OF DOSING</td>
<td>APPLICATION</td>
<td>INDICATION</td>
</tr>
<tr>
<td>--------------</td>
<td>----------</td>
<td>--------------</td>
<td>------------------</td>
<td>----------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>FOXO4-DRI</td>
<td>10ml vial at 10mg/ml</td>
<td>300mcg/kg</td>
<td>3 doses every other day over 5 days</td>
<td>Intravenous</td>
<td>Clear senescent cells</td>
</tr>
<tr>
<td>GHK-Cu</td>
<td>5ml at 10mg/ml</td>
<td>0.2ml daily</td>
<td>Patient preference</td>
<td>Subcutaneous injection</td>
<td>Skin elasticity</td>
</tr>
<tr>
<td>Foam</td>
<td>50ml at 5mg/ml</td>
<td>2 pumps (1ml) daily</td>
<td>Patient preference</td>
<td>Foam (for scalp application)</td>
<td>Hair loss</td>
</tr>
<tr>
<td>IGF-1</td>
<td>Two 6.2ml vials at 620mcg/ml</td>
<td>0.4ml-0.8ml daily</td>
<td>Patient preference</td>
<td>Subcutaneous injection into the abdomen</td>
<td>Muscle building, weight loss</td>
</tr>
<tr>
<td>IGF-1 LR3</td>
<td>6.2ml at 100mcg/ml</td>
<td>0.4-0.8ml daily</td>
<td>Post workout if applicable</td>
<td>Subcutaneous injection into the abdomen</td>
<td>Weight loss, muscle building, somatotropin plus paracrine hormone signaling</td>
</tr>
<tr>
<td>Ipamorelin</td>
<td>5ml at 2000mcg/ml</td>
<td>0.1ml daily</td>
<td>5 days a week</td>
<td>Patient preference</td>
<td>Subcutaneous injection</td>
</tr>
<tr>
<td>IRD</td>
<td>10ml at 2.5mg/ml</td>
<td>40mcg/kg daily</td>
<td>Dose alongside concurrent therapy</td>
<td>Subcutaneous injection</td>
<td>Cancer</td>
</tr>
<tr>
<td>Kisspeptin-10</td>
<td>5ml at 100mcg/ml</td>
<td>0.1ml daily</td>
<td>Patient preference</td>
<td>Subcutaneous injection into abdomen</td>
<td>LH increase</td>
</tr>
<tr>
<td>KPV</td>
<td>30ml TopiClick at 15mg/ml</td>
<td>0.5ml applied twice daily</td>
<td>Patient preference</td>
<td>Transdermal Cream</td>
<td>Psoriasis</td>
</tr>
<tr>
<td>Liraglutide</td>
<td>5ml at 3600mcg/ml</td>
<td>Varies</td>
<td>Varies</td>
<td>Subcutaneous injection</td>
<td>Insulin resistance, weight loss</td>
</tr>
<tr>
<td>LL-37</td>
<td>5ml at 2000mcg/ml</td>
<td>Varies with indication and patient</td>
<td>Physician preference</td>
<td>Subcutaneous injection</td>
<td>Antimicrobial</td>
</tr>
<tr>
<td>Melanotan I</td>
<td>5ml at 2000mcg/ml</td>
<td>0.15ml daily with UVB light exposure</td>
<td>Patient preference</td>
<td>Subcutaneous injection into the abdomen</td>
<td>Vitiligo</td>
</tr>
<tr>
<td>Melanotan I</td>
<td>0.15ml daily for 1-2 weeks then 0.25ml weekly for maintenance</td>
<td>0.15ml daily for 1-2 weeks</td>
<td>Patient preference</td>
<td>Subcutaneous injection into the abdomen</td>
<td>Libido, tanning, weight loss</td>
</tr>
</tbody>
</table>

Please contact Tailor Made Compounding with any questions about product dosing.
<table>
<thead>
<tr>
<th>PRODUCT</th>
<th>QUANTITY</th>
<th>DOSAGE</th>
<th>TIMING OF DOING</th>
<th>APPLICATION</th>
<th>INDICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thymosin Beta-4</td>
<td>5mL at 3000mcg/mL</td>
<td>0.25mL daily</td>
<td>20 days</td>
<td>Subcutaneous injection into the abdomen</td>
<td>Repair soft tissue</td>
</tr>
<tr>
<td>Selank</td>
<td>0.5mg (30 capsules)</td>
<td>1 month on, 1 month off rotation</td>
<td>Patient preference</td>
<td>Oral</td>
<td>Muscle Building</td>
</tr>
<tr>
<td>Semax</td>
<td>5mL at 1000mcg/mL</td>
<td>0.1mL daily</td>
<td>Subcutaneous injection into the abdomen</td>
<td>Neurorestorative</td>
<td></td>
</tr>
<tr>
<td>Tesamorelin</td>
<td>5mL at 1000mcg/mL</td>
<td>0.1mL daily</td>
<td>Subcutaneous injection into the abdomen</td>
<td>Neurorestorative</td>
<td></td>
</tr>
<tr>
<td>Tesofensine</td>
<td>500mcg (30 capsules)</td>
<td>1 capsule daily</td>
<td>In the morning</td>
<td>Patient preference</td>
<td>Weight loss</td>
</tr>
<tr>
<td>Thymosin Alpha-1</td>
<td>5mL at 3000mcg/mL</td>
<td>0.15mg daily or 1.5mg twice a week</td>
<td>Subcutaneous injection into the abdomen</td>
<td>Immune modulation</td>
<td></td>
</tr>
<tr>
<td>Thymosin Beta-4</td>
<td>5mL at 3000mcg/mL</td>
<td>0.25mg daily for 20 days</td>
<td>Subcutaneous injection into the abdomen</td>
<td>Repair soft tissue</td>
<td></td>
</tr>
<tr>
<td>TMB</td>
<td>40mg (30 capsules)</td>
<td>40mg twice daily</td>
<td>Oral</td>
<td>Insulin resistance, weight loss</td>
<td></td>
</tr>
<tr>
<td>TTA/Amlexanox</td>
<td>200mg/40mg (30 capsules)</td>
<td>1 capsule 3 times daily</td>
<td>Oral</td>
<td>Insulin resistance, weight loss</td>
<td></td>
</tr>
<tr>
<td>VIP</td>
<td>12mL at 50mcg/mL</td>
<td>One spray into each nostril up to 4 times daily</td>
<td>Patient preference</td>
<td>Nasal</td>
<td>Mold toxicity</td>
</tr>
<tr>
<td>Zinc Thymulin</td>
<td>30mL at 50mcg/mL</td>
<td>2 pumps (1mL) daily</td>
<td>Foam (for scalp application)</td>
<td>Hair loss</td>
<td></td>
</tr>
</tbody>
</table>
STATES WE ARE LICENSED IN!
POSITIVELY DISRUPTING MEDICINE USING INNOVATIVE TECHNOLOGY

- Quality Assurance (HPLC - Mass Spectrum)
- Education (Webinars - Workshops)
- Partnering with Physicians (Monetize your Practice)
- Peptide Therapy
- IV Therapy
- Sterile Compounding

DOWNLOAD OUR APP TODAY!
Search “Tailor Made Compounding” in the app store
Management Team

RYAN SMITH
VP OF BUSINESS DEVELOPMENT
EMAIL rs@tailormadecompounding.com CELL 859.797.2983

TORY NEWTON
HEAD OF OPERATIONS
EMAIL tory@tailormadecompounding.com

LESLIE SPARROW
OPERATIONS SPECIALIST/LICENSING MANAGER
EMAIL leslie@tailormadecompounding.com

BLAKE MCLEOD
PHARMACIST
EMAIL blake@tailormadecompounding.com

ALEXIS ELLIOT
PHARMACIST
EMAIL alexis@tailormadecompounding.com

Customer Care Team

TY SAYLOR
ACCOUNT MANAGER
EMAIL ty@tailormadecompounding.com

NATASHA GARRETT
SERVICE TEAM LEAD
EMAIL natasha@tailormadecompounding.com

CRYSTAL BREWER
PORTAL SUPPORT
EMAIL crystal@tailormadecompounding.com